
GNU Makefile Journal

Jason Nett, Daniel Cruz Alonso

4/23/13

Contents

1 Understanding Makefiles 1
1.1 Syntax .. . 2
1.2 Simple Example 1 2

1.2.1 Creating Static Libraries and Compiling 3
1.2.2 Creating Dynamic Libraries and Compiling 3
1.2.3 Compiling this example withmakefile . 4

1.3 Pattern Rules in aMakefile . 6
1.4 Pattern Rules and Variables 6
1.5 Phony Targets 7
1.6 Organizing Large Projects andMakefile . 8

1 Understanding Makefiles

I’m following this video: https://www.youtube.com/watch?v=U3wC1DJsWlc

• Programs can consist of several source files

• Number can grow quickly for large projects

• There can be dependencies - Object files can reference each other

• Change in a source file requires the object file to be recompiled and the executable relinked.

• Header file changes can require multiple object files to be recompiled.

Knowing which source files have changed and need to be recompiled can quickly become compli-
cated where you have many source files and a header file can be included by many source files.

• The programmer needs to track which files need to be recompiled or relinked.

• This process can become tedious and error prone for complicated projects.

• One approach: recompile the entire project whenever a change is made, but this could require
hours of compilation time for large projects.

• Alternative: usemake to automate the task

• Several variants ofmake exist

1

• This tutorial uses GNUmake

• make requires that we specify the dependencies that exist in our project

• ...and also requires commands to obtain object or executables from source

• make uses this information for proper rebuilds

• We givemake this information as a ‘makefile’

• It is usually namedmakefile or Makefile

• makefile s consist ofrules, which consist oftargets, prerequisites, andcommands.

1.1 Syntax

The syntax looks like:

target: prereq1 prereq2
commands

NOTE: The whitespace on the second line must be a tab. This command tells make that target
depends onprereq1 andprereq2 . Subsequently,commands tellsmake how to build a target from
the prerequisites.

1.2 Simple Example 1

(In the same series of videos on YouTube, the previous video provided the following source code and I
will use information from that video in this section.)

Let’s create amakefile for a library example using source filestest link.C :

#include <stdio.h>

float cubed(float a);
float powerfour(float a);

int main()
{

float x = 23.1415;
float y = cubed(x);
printf("%f\n", y);
y= powerfour(x);
printf("%f\n", y);
return 0;

}

libcubed.C :

float cubed(float a)
{

return a * a* a;

}

libpowerfour.C

float powerfour(float a)
{

return a * a* a* a;

}

2

1.2.1 Creating Static Libraries and Compiling

We see thattest link.C has two other dependencieslibcubed.C andpowerfour.C . Execute
this line to create object files forlibcubed.C andpowerfour.C :

gcc -c libcubed.C libpowerfour.C

This createdlibcubed.o andpowerfour.o . Note that these are object files, not executables. They
still need to be “linked” into an executable withtest link.C .

Combine these two object files into an “archive”:

jason-> ar rs libmymath.a libcubed.o libpowerfour.o
ar: creating libmymath.a

We have just combined the two object files into a single staticlibrary file libmymath.a .
Now we want to link this librarylibmymath.a to our main program. Note that if we simply tried

to compile the main programtest link.C alone, we will get some compiler errors:

jason-> gcc -o test_link test_link.C
/tmp/ccaskn24.o: In function ‘main’:
test_link.C:(.text+0x16): undefined reference to ‘cubed (float)’
test_link.C:(.text+0x3c): undefined reference to ‘power four(float)’
collect2: ld returned 1 exit status

So to compile the main code with the librarylibmymath.a linked, execute:

gcc -o test_link test_link.C libmymath.a

with the library file simply added onto the end as an argument.Now thetest link executable appears.

jason-> ls
Compile.sh Journal libcubed.o libpowerfour.C test_link
Compile.sh˜ libcubed.C libmymath.a libpowerfour.o test_ link.C
[˜/Documents/Development/Tutorial_makefile]
jason-> ./test_link
12392.946289
286791.375000

• Linking with static (as opposed todynamic) libraries merges object files to produce an executable

• Disadvantages:

– Library code is embedded in the executable

– Large number or large sized libraries

– Executing a program maps it into memory, producing several copies

A better tool is to usedynamic libraries.

• Static Libraries: References are resolved during the linking stage. “Static linking”

• Dynamic Libraries: References are resolved during run-time (execution). “Dynamic linking”
However, in dynamic linking, the executable does NOT have the library code embedded within it.
So those librariesmust be available. With static linking, all you need is the executable because the
library info is already inside it. Additionally, with dynamic linking, the operating system keeps
only one copy of a library in memory.

1.2.2 Creating Dynamic Libraries and Compiling

First, generate PIC (“position independent code”) object files:

jason-> gcc -fPIC -c libcubed.C libpowerfour.C
[˜/Documents/Development/Tutorial_makefile]
jason-> ls
Compile.sh Journal libcubed.o libpowerfour.C test_link
Compile.sh˜ libcubed.C libmymath.a libpowerfour.o test_ link.C

3

This outputslibcubed.o andlibpowerfour.o .
Second, combine the object files into a dynamic library withgcc .

jason-> gcc -shared -Wl,-soname,libmymath.so -o libmymat h.so libcubed.o libpowerfour.o
[˜/Documents/Development/Tutorial_makefile]
jason-> ls
Compile.sh Journal libcubed.o libmymath.so libpowerfour .o test_link.C
Compile.sh˜ libcubed.C libmymath.a libpowerfour.C test_ link

• -shared : produce a shared library

• -Wl,-soname,libmymath.so : (Notice the lack of spaces after commas.) The-Wl calls the
linker and the rest assign a name to the shared library.

• -o libmymath.so : Output the shared library.

Recompiletest link.C while linking in the dynamic librarylibmymath.so :

gcc -o test_link test_link.C libmymath.so

However, when I try to run this:

jason-> ./test_link
./test_link: error while loading shared libraries: libmym ath.so: cannot open shared object file: No such file

The compiler looks for shared libraries in some specific locations and is not finding the shared library in
this case. We need to tell the dynamic linker where to find the dynamic libraries.

How do we do this?

• Environmental variableLD LIBRARY PATH

• Colon separated list of directories

• We add the current working directory to the list

Add the current directory “.” toLD LIBRARY PATH, assuming that it already has some paths listed.

jason-> echo $LD_LIBRARY_PATH

[˜/Documents/Development/Tutorial_makefile]
jason-> export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH
[˜/Documents/Development/Tutorial_makefile]
jason-> echo $LD_LIBRARY_PATH
.:

Now try compiling and running again:

jason-> gcc -o test_link test_link.C libmymath.so
[˜/Documents/Development/Tutorial_makefile]
jason-> ./test_link
12392.946289
286791.375000

1.2.3 Compiling this example withmakefile

Try this Makefile :

test_link: test_link.C libmymath.so
gcc -o test_link test_link.C libmymath.so

Recall the syntax from earlier:

target: prereq1 prereq2
commands

4

We are specifying that executabletest link depends on source codetest link.C as well as the
functions it calls in shared librarylibmymath.so . Those are the “dependencies” of the executable.
Notice how thecommands line of the Makefile is the same compilation command that we used
previously for dynamic linking.

Now perform the compilation with justmake.

jason-> make
gcc -o test_link test_link.C libmymath.so

We could also specify a target withmake [TARGET] .
Let’s go back a step and troubleshoot a common error. Remove file libmymath.so . Now the

compilation fails with a common error message:

jason-> make
make: *** No rule to make target ‘libmymath.so’, needed by ‘test_link ’. Stop.

We need to make a rule for this shared library if it does not exist. It’s looking for a rule whose[TARGET]
is libmymath.so . Currently, none exists inMakefile .

Edit Makefile to:

test_link: test_link.C libmymath.so
gcc -o test_link test_link.C libmymath.so

libmymath.so: libcubed.o libpowerfour.o
gcc -shared -Wl,-soname,libmymath.so -o libmymath.so lib cubed.o libpowerfour.o

Notice that the target is shared librarylibmymath so and the two prerequisites that are combined
into it are the two listed object files. Then, the command is the very same shared library compilation
command from earlier.

jason-> make
gcc -shared -Wl,-soname,libmymath.so -o libmymath.so lib cubed.o libpowerfour.o
gcc -o test_link test_link.C libmymath.so

Just to try again, suppose I remove all the* .o and* .so files and recompile withmake:

jason-> make
g++ -c -o libcubed.o libcubed.C
g++ -c -o libpowerfour.o libpowerfour.C
gcc -shared -Wl,-soname,libmymath.so -o libmymath.so lib cubed.o libpowerfour.o
gcc -o test_link test_link.C libmymath.so

They get generated.

• libmymath.so requireslibcubed.o andlibpowerfour.o

• There are no rules for the two object files

• But we don’t need any because of implicit rules for* .o files.

• We need-fPIC flag, so we can make our own explicit rules for those object files.

Add to Makefile :

test_link: test_link.C libmymath.so
gcc -o test_link test_link.C libmymath.so

libmymath.so: libcubed.o libpowerfour.o
gcc -shared -Wl,-soname,libmymath.so -o libmymath.so lib cubed.o libpowerfour.o

libcubed.o: libcubed.C
gcc -fPIC -c libcubed.C

libpowerfour.o: libpowerfour.C
gcc -fPIC -c libpowerfour.C

Try editing libcubed.C and runningmake again. Onlylibcubed has a new object file made
for it, then the executable is relinked. Unnecessary compiliations were avoided.

5

1.3 Pattern Rules in aMakefile

Notice that the last two sections of theMakefile have the same pattern. If our project expanded to
include even more such dependencies, thisMakefile could quickly become very long.

We use a “pattern rule”. Replace

libcubed.o: libcubed.C
gcc -fPIC -c libcubed.C

libpowerfour.o: libpowerfour.C
gcc -fPIC -c libpowerfour.C

with

%.o: %.c
gcc -fPIC -c $<

This is a “pattern rule” for generating object files from C files.

• %.o: %.c

– Means for a targe that ends with* .o

– The prerequisite is the same stem followed by* .C

• gcc -fPIC -c $< where$< is an automatic variable that expands to the name of the first
prerequisite.

1.4 Pattern Rules and Variables

• Assignment: Variable assignment uses “:= ”

• Reference: Variables are referenced by enclosing it in “$() ”

To the previous example, let’s say we have a couple more functions that get their own object files
libpowerfive.o andlibsquareroot.o . Don’t forget:

jason-> touch libpowerfive.C
jason-> touch libsquareroot.C

Then theMakefile looks like:

test_link: test_link.C libmymath.so
gcc -o test_link test_link.C libmymath.so

libmymath.so: libcubed.o libpowerfour.o libpowerfive.o libsquareroot.o
gcc -shared -Wl,-soname,libmymath.so -o libmymath.so lib cubed.o libpowerfour.o \
libpowerfive.o libsquareroot.o

%.o: %.c
gcc -fPIC -c $<

So our project has a growing list of object files that appears more than once. It would be nice to define
this list just once, then reference the list variable where ever we need. So let’s do that with our two new
operators. Change theMakefile to:

OBJECTS := libcubed.o libpowerfour.o libpowerfive.o libs quareroot.o

test_link: test_link.C libmymath.so
gcc -o test_link test_link.C libmymath.so

libmymath.so: $(OBJECTS)
gcc -shared -Wl,-soname,libmymath.so -o libmymath.so $(O BJECTS)

%.o: %.c
gcc -fPIC -c $<

Now the list of object files is just calledOBJECTSand is used with$(OBJECTS) .
A couple more shorthand symbols for make files:

6

• “$@” Filename of the “target” (see above)

• “$ˆ ” All files in the “prerequisites” (see above)

Using these new shorthands, in the most recentMakefile above, these two lines:

test_link: test_link.C libmymath.so
gcc -o test_link test_link.C libmymath.so

become

test_link: test_link.C libmymath.so
gcc -o $@ $ˆ

Similarly, these following two lines:

libmymath.so: $(OBJECTS)
gcc -shared -Wl,-soname,libmymath.so -o libmymath.so $(O BJECTS)

become

libmymath.so: $(OBJECTS)
gcc -shared -Wl,-soname,$@ -o $@ $(OBJECTS)

And so the newMakefile is:

OBJECTS := libcubed.o libpowerfour.o libpowerfive.o libs quareroot.o

test_link: test_link.C libmymath.so
gcc -o $@ $ˆ

libmymath.so: $(OBJECTS)
gcc -shared -Wl,-soname,$@ -o $@ $(OBJECTS)

%.o: %.c
gcc -fPIC -c $<

We see that ourMakefile is become more concise, though also my cryptic-looking.

1.5 Phony Targets

• Target and prerequisites are not files

• A common “phony target” isclean

– Deletes object files, libraries, and executables

– Makes source ready for complete rebuild

• We will implement aclean target here.

Add these lines to the end of ourMakefile :

.PHONY: clean
clean:

rm * .o * .so test_link

What’s happening?

• Runningmake clean will cause make to build theclean target. Theclean target here has
no prerequisites and then executes its command just as you would from the terminal window
manually again.

• This will work as long a there does NOT exist a file calledclean . If there is one, then the
Makefile will think that targetclean is always up-to-date and not actually execute it.

• We can pre-empt this behaviour by telling theMakefile thatclean is a “phony” target and it
should not actually look for a file calledclean . This is what the “.PHONY: clean ” line does.

• IMPORTANT: Always make sure that thisclean rule goes at the end of theMakefile . Also,
make sure that the rule for the executable is the first one in the Makefile .

7

1.6 Organizing Large Projects andMakefile

(Many thanks to Daniel Cruz Alonso for contributing this section)
For large projects, we typically do not keep all of our sourcecode, header files, and object files in

the home directory of the analysis. Instead, let’s keep our source code in asrc/ directory, the object
files in anobj/ directory, and library files in alib/ directory.

jason-> mkdir src
jason-> mkdir obj
jason-> mkdir lib
jason-> mv * .C src/
jason-> mv * .o obj/
jason-> mv * .a lib/

Let’s start a newMakefile from scratch, though it will be based on adjustments to the previous
one. Begin as before with a list of the object files assigned toa single array:

OBJECTS := libcubed.o libpowerfour.o libpowerfive.o libs quareroot.o

Now let’s define some variables for the new directories we just created and moved files to:

SRCDIR := src
OBJDIR := obj
LIBDIR := lib

Every object file needs to be preceded by the directory name defined and there is indeed a shortcut
for this. OBJSis a variable definition created so that the adding and subtracting of needed (or unneeded)
object files in theOBJECTSdefinition becomes easier (otherwise, for every object file you want to add
you’d have to precede it with$(OBJDIR)/) . The patsubst command takes care of this. It’s a
find-and-replace command that combs over whitespace-separated words. Its syntax is$(patsubst
<pattern>, <replacement>, <text>) . It will look at every word in<text> , and if it finds
a match for<pattern> , it will replace it with<replacement> .

So add to theMakefile :

_OBJS := $(patsubst %, $(OBJDIR)/%, $(OBJECTS)),

makeing it so that every.o file in OBJECTS(hence the wildcard,%) is replaced by that same.o file
preceded by the intendedobj directory. So from

libcubed.o libpowerfour.o libpowerfive.o libsquared.o

you end up with

obj/libcubed.o obj/libpowerfour.o obj/libpowerfive.o o bj/libsquared.o

Subsequently, what was originally

%.o: %.C
gcc -fPIC -c $<

is now

$(OBJDIR)/%.o: $(SRCDIR)/%.C
gcc -fPIC -c -o $@ $<

Now it looks for the prerequisites where the.C files now are (in their source directory), and the added
” -o ” flag enforces the object file to have a name designated by the user; in this case, it’s$@, which is the
target, which is now$(OBJDIR)/%.o . Thus, the object files now end up in their ownobj/ directory,
and don’t clutter the main user directory.

Next, when creating the shared library, instead of

libmymath.so: $(OBJECTS)
gcc -shared -Wl,-soname,$@ -o $@ $(OBJECTS)

it’s now

$(LIBDIR)/libmymath.so: $(_OBJS)
gcc -shared -W1,-soname,$@ -o $@ $ˆ

8

The main difference (aside from adding the library path$(LIBDIR)) is that instead of adding as a
prerequisite$(OBJECTS) , now I add$(OBJS).

Finally, don’t forget to add directory names to the lines linking the executable:

test_link: $(SRCDIR)/test_link.C $(LIBDIR)/libmymath. so
gcc -o $@ $ˆ

I also added the shorthand symbols we’ve seen before in the second line.
The full Makefile now looks like:

OBJECTS := libcubed.o libpowerfour.o libpowerfive.o libs quareroot.o
SRCDIR := src
OBJDIR := obj
LIBDIR := lib
_OBJS := $(patsubst %, $(OBJDIR)/%, $(OBJECTS))

test_link: $(SRCDIR)/test_link.C $(LIBDIR)/libmymath. so
gcc -o $@ $ˆ

$(LIBDIR)/libmymath.so: $(_OBJS)
gcc -shared -W1,-soname,$@ -o $@ $ˆ

$(OBJDIR)/%.o: $(SRCDIR)/%.C
gcc -fPIC -c -o $@ $<

.PHONY: clean
clean:
rm $(OBJDIR)/ * .o $(LIBDIR)/ * .so test_link.x

Testing it:

jason-> make clean
rm obj/ * .o lib/ * .so test_link.x
jason-> make
gcc -fPIC -c -o obj/libcubed.o src/libcubed.C
gcc -fPIC -c -o obj/libpowerfour.o src/libpowerfour.C
gcc -fPIC -c -o obj/libpowerfive.o src/libpowerfive.C
gcc -fPIC -c -o obj/libsquareroot.o src/libsquareroot.C
gcc -shared -W1,-soname,lib/libmymath.so -o lib/libmyma th.so obj/libcubed.o obj/libpowerfour.o obj/libpowerfi ve.o
gcc -o test_link src/test_link.C lib/libmymath.so
jason-> ./test_link
12392.946289
286791.375000

9

