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Use of likelihood fits in HEP&: s %
Gerhard Raven
NIKHEF and VU Amsterdam

Some basics of parameter estimation
Examples, Good practice, ...
Several real-world examples

of increasing complexity...

Parts of this talk taken (with permission) from
http://www.slac.stanford.edu/~verkerke/bnd2004/data_analysis.pdf




Parameter Estimation

T(x;p) D(x)

- = -

# Given the theoretical distribution parameters p, what can
we say about the data

D(¥) T(x;p)

- Statistical -

inference

¢ Need a procedure to estimate f) from D(i?)
= Common technique — fit!



A well known estimator — the 2 fit

L
—_ askE

¢ Given a set of points X,V.,0.
and a functlon f(x,p) {( i» )i )i st
deflne the X ................................... 2_25

o Estimate parameters by minimizing the +?(p) with respect to all
parameters p,

m In practice, look for

: ; Error on p; is
SR £ given by %2
/1 variation of +1

\/ Value of p; at

*« minimum is
-2 15 <1 05 0 05 1 15 2. .
p’. :  estimate for p;

-
.....

¢ Well known: but why does it work? Is it always right? Does it always
give the best possible error?



Back to Basics — What is an estimator?

¢ An estimatoris a procedure giving a value for a parameter or a
property of a distribution as a function of the actual data values, e.qg.

1

u(x) = I E X, & Estimator of the mean

n ] .
Vi(x)= N E (x; - M)z & Estimator of the variance

¢ A perfect estimator is
= Consistent:  lim,__(4)=a

m Unbiased — With finite statistics you get the right answer on average
. A A A\ 2
m Efficient; V(a) = <(a - <a>) > This is called the

Minimum Variance Bound

m There are no perfect estimators!



Another Common Estimator: Likelihood

& Definition of Likelihood
= given D(x) and F(x;p)

NB: Functions used in likelihoods
must be Probability Density Functions:

[F(%:p)di =1, F(x;p)>0

L(p)=F(xy;p) F(x;;0) F(x,;P)...

m For convenience the negative log of the Likelihood is often used

¢ Parameters are estimated by maximizing the Likelihood,

or equivalently minimizing —/n(L) -




Variance on ML parameter estimates

¢ The estimator for the parameter variance is

'0..
LT

= |.e. variance is estimated from
2"d derivative of —log(L) at minimum

= Valid if estimator is
efficient and unbiased! ..~

¢ Visual interpretation of variance estimate
m Taylor expand log(L) around maximum

*,. | From Rao-Cramer-Frechet

"1 inequality |4 db
Vi) o,
p - d*InL
dzp /

b = bias as function of p,

inequality becomes equality
in limit of efficient estimator

dinL d’InL
dzp

InL(p)=InL(p)+

p=p

d’ lnL‘

(p-Dp)+3

(p-p)

p=p

(p-p)

=InL__ + >
&p |,

2
=InL__ + —(p — ‘?)
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p
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Properties of Maximum Likelihood estimators
¢ In general, Maximum Likelihood estimators are

s Consistent (gives right answer for N-> )
s Mostly unbiased (bias «1/N, may need to worry at small N)
m Efficient for large N (you get the smallest possible error)

= Invariant: (a transformation of parameters
will NOT change your answer, e.g (ﬁ)2 = Gz\)

*
*
*
.
.
3
.
.
.
‘e
3

" Use of 2nd derivative of —log(L)
for variance estimate is usually OK

¢ MLE efficiency theorem: the MLE will be unbiased and efficient if an
unbiased efficient estimator exists

= Proof not discussed here for brevity

s Of course this does not guarantee that any MLE is unbiased and
efficient for any given problem



More about maximum likelihood estimation

¢

¢ |t does not give you the ‘most likely value of p’ —
it gives you the value of p for which this data is most likely

. to find
the maximum of In(L)
m Especially difficult if there is >1 parameter
m Standard tool in HEP: MINUIT

¢ Max. Likelihood does give you a measure

= |f assumed F(;;b’) is not capable of describing your data for anyTJ,
the procedure will not complain

s The absolute value of L tells you nothing!



Properties of x? estimators

o Properties of y? estimator follow from properties of ML
estimator
Probability Density Function

in p for single data point y;*c;
and function f(x;;p)

Take log,
Sum over all points x;

The Likelihood function in p
: 4— for given points x;(c;)
: and function f(x;;p)

¢ The x? estimator follows from ML estimator, i.e it is
m Efficient, consistent, bias 1/N, invariant,
s But only in the limit that the error ¢; is truly Gaussian
= i.e. need n,> 10 if y, follows a Poisson distribution

o Bonus: Goodness-of-fit measure — 2 = 1 per d.o.f



Estimating and interpreting Goodness-Of-Fit

4 Fitting determines best set of parameters R o I
of a given model to describe data "

| l.e. 1°§— —

= Is it an adequate description,

or are there significant and ) :
incompatible differences? R RN I A

‘Not good enough’
¢ Most common test:

Xz _ Z(yi _];S)_éi;ﬁ))2

1

= If f(x) describes data then x? = N, if x> >> N something is wrong
= How to quantify meaning of ‘large x%'?
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How to quantify meaning of ‘large %
# Probability distr. for x? is given by

~N/2
2

T T(N/2)

N=2 —x*/2
e X

=3 [EEE e P N) X
; oF

¢ To make judgement on goodness-of-fit,
relevant quantity is integral of above:

P(XZ;N)=fP(X2';N)dX2'
XZ

¢

= [tis the probability that a function which does genuinely describe
the data on N points would give a 2 probability as large or larger
than the one you already have.

Since it is a probability, it is a number in the range [0-1]

1



Goodness-of-fit — 2

o Example for %2 probability

= Suppose you have a function f()?;@ which gives a %2 of 20 for 5 points
(histogram bins).

= Not impossible that f()?;ﬁ) describes data correctly, just unlikely

= How unlikely? f p(x°,5)dyx” =0.0012
20

¢ Note: If function has been fitted to the data

= Then you need to account for the fact that parameters have been
adjusted to describe the data
Nyor = -N

data params

& Practical tips
m To calculate the probability in PAW ‘call prob(chi2,ndf)’
m To calculate the probability in ROOT ‘TMath: : Prob (chi2,ndf)’

= Forlarge N, sqrt(2y?) has a Gaussian distribution
with mean sqrt(2N-1) and o=1

12



Goodness-of-fit — Alternatives to 2

¢ When sample size is very small, it may be difficult to find sensible
binning — Look for binning free test
.

1) Take all data values, arrange in increasing order and plot cumulative
distribution

2) Overlay cumulative probability distribution

B — T T
s F ] F ] [ 2
gm- - 250 4 250 .
w or ] A ] [ ]
al . 20~ . 0 -
; ] i . ]
6 ] o E S . " AL TP .
] : ] : ] e
— 101 - 101 - R
1 L ] F ] .
] C 1 S A Pt
5[ .
*" 4
“‘ -
“‘
[ ST, ¢ SU I IS TR P T P I P Y 1] *¥¥ « wrward FEWH FEE NP FEES FETE FEWE SR P o L
10 8 6 4 -2 0 2 4 6 8 0 10 8 6 -4 -2 0 2 4 6 8 10 -0 8 -6 4 -2 0 2 4 6 8
x .‘
;
:
.
.
- — . —
= : d=~N max|cum(x) cum( p)|

m ‘d large = bad agreement; ‘d’ small — good agreement

m Practical tip: in ROOT: TH1: :KolmogorovTest (TF1&)
calculates probability for you
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Maximum Likelihood or %27

o 2 fitis fastest, easiest

Works fine at high statistics

Gives absolute goodness-of-fit indication

Make (incorrect) Gaussian error assumption on low statistics bins
Has bias proportional to 1/N

Misses information with feature size < bin size

¢ Full Maximum Likelihood estimators most robust

No Gaussian assumption made at low statistics
No information lost due to binning
Gives best error of all methods (especially at low statistics)

No intrinsic goodness-of-fit measure, i.e. no way to tell if ‘best’ is actually ‘pretty
bad’

Has bias proportional to 1/N
Can be computationally expensive for large N

¢ Binned Maximum Likelihood in between

Much faste.r than full Maximum L|k|ho.od. | CnL(p)yy=Sn IFRE, i P)
Correct Poisson treatment of low statistics bins s

Misses information with feature size < bin size

Has bias proportional to 1/N
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Practical estimation — Numeric «? and -log(L) minimization

o For most data analysis problems minimization of %2 or
—log(L)
= Need to rely on numeric/computational methods
= |n >1 dimension !

¢ But no need to worry — Software exists to solve this
problem for you:
[ |
= MINUIT does function minimization and error analysis
m [tis used in the PAW,ROOT fitting interfaces behind the scenes
|

It produces a lot of useful information, that is sometimes
overlooked

15



Numeric x?/-log(L) minimization — Proper starting values

+ For all but the most trivial scenarios it is not possible to
automatically find reasonable starting values of

parameters

= This may come as a disappointment to some...
m SO you need to supply good starting values for your parameters

-log(L)

- N w - o o ~
TTTTTT[TTT

Local
minimum

ITI‘LIIe minimum

M BT . A P
-2 0 2 4 6 8B

-
&
A

Reason: There may exist
multiple (local) minima
in the likelihood or »?

)
m Supplying good initial uncertainties on your parameters helps too

m Reason: Too large error will result in MINUIT coarsely scanning
a wide region of parameter space. It may accidentally find a far

away local minimum

16



Multi-dimensional fits — Benefit analysis

¢ Fits to multi-dimensional data sets offer opportunities but
also introducepsr%veral headaches

Con
¢ Enhanced in sensitivity ¢ More difficult to visualize
because more data and model, model-data
information is used agreement
simultaneously + More room for hard-to-find
¢ Exploit information in problems
correlations between ¢ Just a lot more work

observables

¢ It depends very much on your particular analysis if fitting
a variahla ic hattar than cutting on it

Ssd 1 < No obvious cut, S
*} may be worthwile to gs
include in n-D fit a7

Obvious where to cut, :
probably not worthwile f
to include in n-D fit >

N S NSRS a a )

17



Ways to construct a multi-D fit model

& Simplest way: take product of N 1-dim models, e.g

FG(x,y)=F(x)-G(y)
m Assumes x and y are uncorrelated in data. If this assumption is
unwarranted you may get a wrong result: Think & Check!

¢ Harder way: explicitly model correlations by writing
a 2-D model, eg.:
H(x,y) = exp\_— ((c+y)2)

¢ Hybrid approach:

m Use conditional probabilities
FG(x,y)/='F(x | ) G(y)+— Probability fory f(;(y)dy ~1

Probability for x, given a value of y
fF(x,y)dx =1 forall valuesof y

18



Multi-dimensional fits — visualizing your model

¢ Overlaying a 2-dim PDF
with a 2D (lego) data set
doesn’t provide much insight

“You cannot do quantitative analysis with 2D plots”
(Chris Tully, Princeton)

¢ 1-D projections usually easier

£,(0) = [F(x,y)dy £.() = [F(x, p)dx

= . o PAERRIRaASS

N20[ _ NOL ]
20 {' 1 s [
Hoo[- . 240

80/ ]

C 30
60| ] i
L 20[
40 ] [
20 101

0l PR PR TR PP FOTTR TS PYTT PO PP TP

-101234)(5 R e e S S S R N

y

x-y correlations in data and/or model difficult to visualize
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Multi-dimensional fits — visualizing your model

+ However: plain 1-D projections often don'’t do justice to your fit

s Example: 3-Dimensional dataset with 50K events, 2500 signal events
= Distributions in x,y and z chosen identical for simplicity

¢ Plain 1-dimensional projections in x,y,z

—_ —~ T O T O T T T g —~ T AR RN R R RN LR A RR N RARRE R

1&00_ Hoo— & ﬁoﬂ_—

o L (=] N =] r

fo0L oo} 1100

i il 1

00 00 00

00, F: . b

1000L 1000f ] 1000f

800[ 800:— —: 800:— —:

eoof 600[- = 600 3

400 400 ] 400 ]

200f 2001 3 200 -
0: OLu ol by b b by b b L Olon by v lo o by by by b by biaas
5 4 3 2 <1 0 1 2 3 4 5 4 3 2 <1 0 1 2 3 4

¢ Fit of 3-dimensional model finds N, = 2440+64
m Difficult to reconcile with enormous backgrounds in plots
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Multi-dimensional fits — visualizing your model

¢ Reason for discrepancy between precise fit result and
large background in 1-D projection plot

m Events in shaded regions of y,z projections can be discarded
without loss of signal

lllll IR A AR R AR LR RERRE RERRE RERR=

1400
©
100
8

1300

1000

-
‘.‘
-

600

400

el b by by b bl ’I.‘[

200

Ol lonlonlonlonlonloulou b bl 0 ] 0

X Y Z
. . show only events in x projection
that are likely to be signal in (y,z) projection of fit model
m Zeroth order solution: make box cut in (x,y)

m Better solution: cut on signal probability according to fit model in
(y,2)

5 4 3 2 1 0 1 2 3 4 5 S5 4 3 2 4 0 1 2 3 4 & 5 4 3 2 4 0 1 2 3 4 5
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Multi-dimensional fits — visualizing your model

¢ Goal: Projection of model and data on x,

# First task at hand: according
to PDF variables

m Define 2-dimensional signal and background PDFs in (y,z)
by integrating out x variable (and thus discarding any information
contained in x dimension)

_ ‘“oo__'"'I""I""I""I""I""__

FSIG(yaZ) _fS(xa y,z)dx goog_ Sig-like < : ~ Bkg-like 3
FBKG(ya Z) =fB(x, Y, Z)dx éooz_ events ;é events —;

oo & & 3

= Calculate signal probability P(y,z)  1200- [ Y =
for all data points (x,y,z) 1000 . E
BOOF- st . 3

P,.(y,2) = FSIG(yaz) ““;‘ ’ﬁ, .. —

L F6(y,2) + Fyy(y,2) :::: 2 .: 3

: ﬂé..‘....l....l....m

s Choose sensible cut on P(y,z) S S
-log(Ps;6(Y,2))

22



Plotting regions of a N-dim model — Case study

& Next: plot distribution of data, model with cut on Pg(Y,2)
= Data: Trivial
m Model: Calculate projection of selected regions with Monte Carlo method

1) Generate a toy Monte Carlo dataset D,yy(X,y,z) from F(x,y,z)
2) Select subset of D,y With Pg;s(y,z)<C

3) plot fo(x)= EF(X,y,-,Z,-)

DTOY
Likelihood ratig projection Plain projection (for comparison)

w70 — 777 AABALAARRLARARE RARRE RERAE RAARN RARRN RARES RARRN RARS:
s . woor *
Ze0[- 3 {fZoolC 1
g ] 2 ]
$ of ] Soo ]
e ~ E BF E
40_ % {_ 3 1000 —;
- / i 800[ -
30_— h C ]
- “-}* * ] 600 ]
20[ e L~ = - .
'] . 400~ .

1o E 200[- E
o NSIG_244O :t 64 J C .
olu v bbb bl b b b bend ] STET FUTTUFEETY FRUTE FUUTE FRTTY FRUTE PUUTE R I ]
L CR R S R R Qg g g g
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Alternative: ‘sPlots’

¢ Again, compute signal probability based on variables y and z
& Plot x, weighted with the above signal probability

¢ Overlay signal PDF for x

24000 X BosKer
0 -t
ﬂ% B°>Kx*

Events /30 M

0.1 0 0.1
AE (GeV)

FIG. 2: Distributions of AFE in data (points with error bars)
and the PDFs (curves) used in the maximum likelihood fit
for K7~ (solid circles and solid curve) and K~7% (open
circles and dashed curve). The data are weighted using the
background-subtraction technique of Ref. [15] (see text).

PRL 93(2004)131801

2

AN
S
=)

\®)
S
S

e
[a—

W

J
N
[

Asymmetry Events /2.5 MeV/c

S
(S
I

52 522 524 526 5.28 25.3
mg (GeVic)

FIG. 3: (a) Distribution of mgs enhanced in K+*7~ (solid
histogram) and K—nt (dashed histogram). (b) Asymmetry
Ak calculated for ranges of mgs. The asymmetry in the
highest mpgg bin is somewhat diluted by the presence of back-

ground.

& See http://arxiv.org/abs/physics/0402083 for more details on sPlots
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Multidimensional fits — Goodness-of-fit determination
¢ \Warning:

= Standard y? test does not work very will in N-dim because of
natural occurrence of large number of empty bins

= Simple equivalent of (unbinned) Kolmogorov test in >1-D does
not exist

¢ This area is still very much a work in progress
= Several new ideas proposed but sometimes difficult to calculate,
or not universally suitable

= Some examples
e Cramer-von Mises (close to Kolmogorov in concept)
e Anderson-Darling
e ‘Energy’ tests

[ |

= Some references to recent progress:
o PHYSTAT2001, PHYSTAT2003

25



Practical fitting — Error propagation between samples

+ Common situation: you want to fit
a small signal in a large sample

= Problem: small statistics does not
constrain shape of your signal very well

m Result: errors are large

Events /(0.8 )
N
wm

Signal |

¢ |ldea: Constrain shape of your signal

from a fit to a control sample ;«.Control 3
= Larger/cleaner data or MC sample with :
similar properties E

505— B

=PI PP EFEPIPEN PRI IR VRN ST EPUPEN IS
‘0 8 6 4 2 0 2 4 [ 8 10
X

¢ Needed: a way to propagate the information from the control sample
fit (parameter values and errors) to your signal fit
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Practical fitting — Error propagation between samples

¢ 0t order solution:

m Fit control sample first, signal sample second — signal
shape parameters fixed from values of control sample fit

m Signal fit will give correct parameter estimates

m But error on signal will be underestimated because uncertainties
in the determination of the signal shape from the control sample
are not included

¢ 1storder solution
= Repeat fit on signal sample at pzo,

m Observe difference in answer and add this difference in
quadrature to error: . .
o’ =o. +(NIZ7 =Ny /2

1ot stat sig sig

= Problem: Error estimate will be incorrect if there is >1 parameter
in the control sample fit and there are correlations between
these parameters

& Best solution: a simultaneous fit

27



Practical fitting — Simultaneous fit technique

¢ given data D ,(x) and model F (X; ps,g) and
data DctR x) and model F_,(X;P.qy)

= construct x%q(Psig) and x*u(Pcy) and

3 "4
Dsig(X)l Fsig(x;psig) ctI(X)r FctI(X pctl)

E n 5450_' L LI B N IR I BRI BRI B R —f

E gwo —E

- 350 _i
00 3
;
00 _§
L|=45 T 55 Sha5 2% T _:
1oo§_ _f
%f E
%

& Minimize 2 (psigspctl)z Xzsig(Psig)"' XZct(Petr)

m All parameter errors, correlations automatically propagated
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Practical Estimation — Verifying the validity of your fit

¢ How to validate your fit? — You want to demonstrate that

1)
2)

Your fit procedure gives on average the correct answer

The uncertainty quoted by your fit is an accurate measure for the
statistical spread in your measurement

Correct behavior not obvious a priori due to intrinsic ML bias
proportional to 1/N

¢ Basic validation strategy —

1)
2)

Obtain a large sample of simulated events

Divide your simulated events in O(100-1000) samples with the same
size as the problem under study

Repeat fit procedure for each data-sized simulated sample
Compare average value of fitted parameter values with generated value

Compare spread in fitted parameters values with quoted parameter
error

29



Fit Validation Study — Practical example

¢ Example fit model in 1-D (B mass) {4
Signal component is Gaussian s i i
centered at B mass o | :
Background component is ;M | -
‘Argus’ function (models phase U

space near kinematic limit)
F(m§Nsig>kag913S>l_53) = N, *G(m; pg) + N g *A(m; py)

Ni;(generated)

5
=

Events /( 2.5)
&
T

w
o
RN RRA

Results of simulation study: s . { 3
1000 experiments wf { :

Distribution of Ng(fit) ot ;}4} H}ﬁ 3
This particular fit looks unbiased... ”5;% . A é&éz

Nsig(fit)
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Fit Validation Study — The pull distribution

+ What about the validity of the error?

m Distribution of error from simulated
experiments is difficult to interpret...

= We don’t have equivalent of
N (generated) for the error

+ Solution: look at the pull distribution

fit true

) _ sig N Sig
-~ fit
ON

= Definition: [pull(N

sig

= Properties of pull:
e Mean is O if there is no bias
e Width is 1 if error is correct

m In this example: no bias, correct error ‘
within statistical precision of study ===

LA e e e
L | pullSigma = 1.039 + 0.040
pullMean = 0.012 + 0.053




Fit Validation Study — Low statistics example

& Special care should be taken when fitting small data
samples

m Also if fitting for small signal component in large sample

¢ Possible causes of trouble

= 2 estimators may become approximate as Gaussian
approximation of Poisson statistics becomes inaccurate

m ML estimators may no longer be efficient
- error estimate from 2"d derivative may become inaccurate

= Bias term proportional to 1/N of ML and x? estimators may
no longer be small compared to 1/sqrt(N)

¢ In general,
. How to proceed?

m Use unbinned ML fits only — most robust at low statistics
m Explicitly verify the validity of your fit
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Demonstration of fit bias at low N — puII dlstrlbutlons

¢ Low statistics example: ,E Nexc(gen)= zo E
m Scenario as before but now with Pue 3

200 bkg events and of }[ ][ 1[ 3

only 20 signal events (instead of 100) "ET] ([w H [l J. E

¢ Results of simulation study R
NBKG(gen) 200

mES

Distributions become Pull mean is 2.30 away from 0
asymmetric at low statistics > Fit is positively biased!

Nsig(gen) S

:!“_ rrrrrrrTrTT ’og E"'|"'|'"]'"I"'l"'l"']"'l"'l E,.Goz_"""]s'."';'1'0'9'o|+'°'0'4‘7|""|""; ¢
=% . Zsof = I :
‘235;_ }m R g - H+ é ;:5:_ pullMean = 0.138 + 0.060 J 3
T I A :
::Hﬁ ............... . o;gl{}u{}#ul ..#}W :_l. ..... % .............. ;lg'l‘_
Ns;c(fit) 0(Nsze) pull(Ng;c)

& Absence of bias, correct error at low statistics not obvious!
m Small yields are typically overestimated
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Fit Validation Study — How to obtain 10.000.000 simulated events?

¢ Practical issue: usually you need very large amounts of
simulated events for a fit validation study

m Of order 1000x number of events in your fit, easily >1.000.000
events

m Using data generated through a full GEANT-based detector
simulation can be prohibitively expensive

¢ Solution:

m Technique named ‘Toy Monte Carlo’ sampling
= Advantage: Easy to do and very fast

m Good to determine fit bias due to low statistics, choice of
parameterization, boundary issues etc

= Cannot be used to test assumption that went into model
(e.g. absence of certain correlations). Still need full GEANT-
based simulation for that.

34



oy MC generation — Accept/reject sampling

& How to sample events directly from your fit function?

¢ Simplest: accept/reject sampling

1) Determine maximum of function f__,
2) Throw random number x
3) Throw another random number y
a) If y<f(x)/f .., keep X,
otherwise return to step 2)

m PRO: Easy, always works

m CON: It can be inefficient if function
is strongly peaked.
Finding maximum empirically
through random sampling can
be lengthy in >2 dimensions

fessadanbnanangendanbhnaanas

IIIllllllllllllll]llll]lllllllllllllll

L L
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Toy MC generation — Inversion method

¢ Fastest: function inversion ol

1) Given f(x) find inverted function F(x)

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

sothat f(F(X) )= x e b
2) Throw uniform random number x w

3) Return F(x) ot-“'éli"é.li"é.la"'6.':';"6.'5"6.'6"6."}"6.15"6.19')'21

Take —-log(x) @

gos:—"- Exponentialj

g F e distribution}

: ~. _;

= PRO: Maximally efficient " :

m CON: Only works for invertible funct ) #*H}HH

-In(x)



Toy MC Generation in a nutshell

¢ Hybrid: Importance sampling

1

m PRO: Faster than plain accept/reject sampling
Function does not need to be invertible

m CON: Must be able to find invertible envelope function

Imperial College, London -- Feb 2nd 2005
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A ‘simple’ real-life example:
Measurement of B? and B* Lifetime at BaBar

Exclusive

DO
reconstructed B>

*
7!
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Measurement of B® and B* Lifetime at BaBar

J'l3+

Exclusive Do
reconstructed B>7%

At = Az/ypC

1. Fully reconstruct one B meson (Bgec)
2. Reconstruct the decay vertex

4. compute the proper time difference At
5. Fit the At spectra

39



Measurement of B® and B* Lifetime at BaBar

Tag B
o, ~ 110 um

Y Exclusive Do
reconstructed B "

o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o
.
o
)

At = Az/yBC

1. Fully reconstruct one B meson (Bgec)
2. Reconstruct the decay vertex

1/ BO SD** v
— DO gt
—Ktt

40

B

Events,/ 1 MeV/c ?
N

N B o [+%} o

Events /] MeV/c ?
N s

o
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Measurement of B® and B* Lifetime at BaBar

el Neutral 1. Fully reconstruct one B meson (Bggc)
wl200— I I

£ B Mesons a) Classify signal and background
unooo:— N ~ 9400

800} B"/B" -

sof. Uity 83%

S1400—

£ t  Charged

1200

£ B Mesons
é’IOOO—

wf- N e -~ 800
6003— ]\.lll’il_\ 85%

Utilize that @ BaBar, in case of signal,

sod oo Lo e b s o by Laa e baw s Lty

502;‘0‘ 5210 5220 5230 5240 5250 5260 5270 5280. .5290 59300 One prOduceS exaCtIy 2 B mesons, SO their
Energy substituted mass [MeV/c?] energy (in the center-of-mass) is half the

center-of-mass energy of the collider

2
Mgg = ﬁ - (pcm )2



0.01 O
0.008:
D.DDB:
0.004:

0.002

Signal Propertime PDF

T Exclusive D?
reconstructed B‘,«'n+

JU
At = Az/ypC
10 /T e—t,ag/r
F(trec’ttag;r)= ’
T T

t”ec > tmg — A = trec - ttag >

e—Zt/r
F(At,Zt,7)= —

1 F(At,'[')= det F(At,Zf,T):

0 .5 10 | At|
Decay time difference {ps)

i c

zt = trec + ttag

eJA%
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Including the detector response...

¢ Must take into account the detector response

m Convolve ‘physics pdf with ‘response fcn’ (aka resolution fcn)
= Example: [(A"‘A’H‘]

o oM T 20
F(At;7:,u,c7)=j:oo dAt’

2T AN 2mo

0.03 0.007

e_[(ArLAry,ur

20

N2mo

Resolution
Function +
Lifetime

0.006

0.002F

0.001F

||||||||||||||||||

-5

0 5 10 - 10 .
Decay time difference (ps) Residual -10 -5 0 5 10
v ps esidual {ps) Reconstructed decay time difference (ps)

¢ Caveat: the real-world response function is somewhat
more complicated

m eg. additional information from the reconstruction of the decay
vertices is used...
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How to deal with the background?

%4005— BABAR ‘r\
F(m,At;...)= Fnj;gs(m;mB,... 2 (AfT,...) i:::_ o Ees)
ST v e
T o Y W e
600~
_ F}Z‘f (m,) Fe (At ) 4002
ijf(m‘ )+FSig(WI' B,.) 200}

Fs’g (m Mp,.. )

5200 5210 5220 5230 5240 5250 5260 5270 5280 5290 5300

F Asig (At T,. ) \_ Beam-Energy SUbyuted Mass (MeV/c %)
Fbkg(m )+Fs’g(m My,.. ) t ’ N
a T I T T T T T T LI I T 1 1 1 ] 1 1 T 1 1
0. X0 0
| 2 BY Bkg At

sz

m,;i (m )F P mMes<5.27 GeVic?
fo

+ Pbkg (m 5

150

100

U
=

mlllllIllllllllllllllllllllll.ll

=]
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Events,/ 1 MeV/c 2
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o
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400

200

Putting the ingredients together...

BABAR

.......
.
.

5200 5210 5220 5230 5240 5250 5260 5270 5280 5290 5300
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Events / 0.16 ps

&
S

250

200

150

100

U
o

=}

AL L I e e L L B
5 % BABAR -
: A4 ]
n J % E
3 JN E
E &'/ 4\**;)'_’ E
ﬁnﬂ_m&ﬁl_l_l_l_l_l_l_l_l_l_Ll_lMﬂMl)—.
8 -6 4 2 0 2 4 6 8

Delta t (ps)

~InL(z....)= N InF(m;, At;;....

F(ma At,T,) = Fnj;i (m,)FASlg

10’

10

10

bkg (...
+F, (m,

1

A]’t"g (At;...)

(At;r,...)

CrTrJrrrr ot

T IIIIIII| T IIIIIII| T IIlIIII|

»»»»»»

LIRS

T
.......

1 IIIIIII| 1 IIlIIIII

!

1111l
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Measurement of B® and B* Lifetime at BaBar

FSig (ml,mB,O‘B)XF”g(At T bR(At - At; pres )+

KO
S, o
B bkg . = bkg B° Fbkg ¢ _.bkg B
mEs i ’ MEgs i At

-----
"""""""
us .
(% -
(% .
-----

[ E (m,;m,, 0, )xFS’g(At T bR(At NS
+ n
B

bkg bkg,B”* )( bkg Q — bkg,B* )
mES (nl’ mgs F tl’ P

-----
........
,,,,,
_____
.

— BABAR

5o

Events./ 1 MeVic 2
n -
(=3 (=}
o o

=

=3

=)
T

800
600[—

400

2000~ PRIy
pe e b b SRR

.......

L. 107 &
52 5210 5220 5230 5240 5250 szso }270 5230 5290 5300
YB eam-Energy Substituted Mass (MeV/c °)

1 3F BABAR

1 m200
12001

£ F
Si000f—
800[—
600/

400

200

................................

5300 5210 5220 5230 5240 5250 5260 5770 5280 5290 5300
g stituted Mass (MeVic %)

‘e
.
.
‘e
.

‘e.
Ly
"y
......
-------------

.'
..
.

Strategy: fit mass, fix those parameters
then perform At fit.
19 free parameters in At fit:
2 lifetimes
5 resolution parameters
12 parameters for empirical bkg
description

o P P AR
-8 -6 4 2 0 2 4

et 1 (s 1 T e
oL 87 (20
At RF parameterization

Top =1.946+0.032+0.022 p
T, =1.673+0.032+10.022 ps

T, /tp =1.082 + 0.026 {0.017]

Common At response
function for B+ and B°
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Neutral B meson mixing

¢ B mesons can ‘oscillate’ into B mesons — and
vice versa
= Process is describe through 2" order weak diagrams

like this: _ _ —
b Vip t Vig

Observation of B’°B® mixing in 1987 was the first
evidence of a really heavy top quark...
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Measurement of B°B° mixing

- 0.56 AZ "
i At = Az/ypC

1. Fully reconstruct one B meson
in flavor eigenstate (Bgee)
2. Reconstruct the decay vertex

v
v

4, Determine the flavor of
B¢ to separate Mixed and
Unmixed events

6. Fit the At spectra of mixed and unmixed events
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Determine the flavour of the ‘other’ B

o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o
o

_( o, ~ 65 um
Y(4s) ) +
AZ g .
By = 0.56
At = Az/yfC
[~ — B’ % %
v [ — B’ W= W &
W; “““ b .‘.".’ C :‘0... S
b “““““ C C—\ kaon
E oo
e
= = Lepton Tag
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At distribution of mixed and unmixed events

f t I i t
il tagging & ti luti mis-tagging & finite time resolution
t be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open
e file again. If the red x still appears, you may have to delete the image and then insert it again. a s, you may delete th a

The image canno and The image
* then open the file ag Il app g 9. “ the file again. If the red x still appears, y y have to the image and then insert it again

Hil/rp,

fAH =, € i lx( L g— ﬁo)s( Am) At JR@olutionFunction
Mix Bd

v_lag

. 1. p0 po 50 1o
Unmixed: B, B, or B, B

Amy: oscillation frequency . 0 A
w: the fraction of wrongly tagged Mixed: 5 10Biag O B, Brag
events
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Normalization and Counting...

The PDF’s used for unmixed (+) and mixed (-) events are usually:

Fo(AET, Amg) = ge—FlAtl (1 + cos AmgAt)

Note that f are not individually normalized, but their sum is:

/00 dAL [f+ (AT, Amg) + f- (AT, Amg)] =1

J —00

The individual normalizations are:

> 1
N:t - / dAtf:t(At;F, Amd) = 5 +

J —00

where x4 = A}”d

. . . N_
The fraction of mixed events is xq = N tN- %

If one wants to fit just mixed events, one maximizes:

(At;; T, Amyg)
— P Amd)

L_(T, Am)—H‘f—

where M is the number of mixed events

For mixed events, replace f_ <> fi; N_ <> Nyand M < U

where U is the number of unmixed events

When fitting just the At shapes:

f- f+
L=CyxLo=]][=*x]]5
AN- T AN

® The likelihood to measure M mixed and U unmixed events is:

_ (M+U)! M
Lnorm - W(pmix) (1 — Pmix

o« xq'(1—xa)¥

B N \Y 7 N Y
 \N; +N_ N, +N_

= (No)M(Ny)Y

)U

e Combining shapes and and the normalization:

L = »C—+—»C—»Cnorm

= (1) < (I ) oo
- (1) (11+)

*Counting matters!

-Likelihood fit (implicitly!) uses the integrated
rates unless you explicitly normalize both
populations seperately

*Acceptance matters!

sunless acceptance for both populations is the
same

= Can/Must check that shape result consistent with
counting




Mixing Likelihood fit

Unbinned maximum likelihood fit to flavor-tagged neutral B sample

7l{lz‘|/r B,
fALL = lx( L Q uo)s( Am) At )>®R
Mix

Fit Para meters \
Mistag fractions for B® and B° tags 8
Signal resolution function(scale factor,bias,fractions) 8+8=16
Empirical description of background At 19
B lifetime fixed to the PDG value Tg = 1.548 ps

All At parameters

44 total free parameters i extracted from data
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Complex Fits?

Parameter Fit Result Correlation
Run 1 [ Run 2 Run 1[Run 2 For o TS T T RN
Amg [ps™] = 0516 L0016 — ==1 ., T T T T 3— o0 F Unmixed Events } a) J
Signal Resolution Function f;' - Unmixed Events t b) ? M >527 !
1 (core) 1.37 £ 0.09 LI8£0.11 [ 0.25] 0.16| || = 200 F M.<5.27 Epoot ES ]
(At) lepton (core) 0.06+013 | —0.04+016 | 008 o000 |35 [IVIEgSY. - :
b1 (At) kaon (core) —022+008 | —0.25+009 | 003| 000||] E 100 E W Foo b 3
b1(At) NT1 (core) —0.07 £ 0.15 —0.45+0.21 |-0.00| 0.00 = r A F N
bi(At) NT2 (core) —0.46 £ 0.12 | —0.20 £0.16 0.01| 0.03 [ "ok d
ba(At) (tail —5.0+4.2 —-75+24 0.04| 0.06 N s oo L Mixed Events
fQ(( al% ) 0.014 £ 0.020| 0.015+0010| 0.06| 0.07 10T Mixed Events H00 1 ]
fa(outlier) 0.008 £ 0.004| 0.000 £0.014|{—-0.09| 0.01 100 £ E [
Signal dilutions r = r
[D), epton 0.842 £ 0.028 0.2 Wb 250 T
(D), kaon 0.669 £+ 0.023 0.30 r b
(D), NT1 0.563 £ 0.044 0.11 C c
(D), NT2 0.313 £ 0.041 0.11 n v r il Eom
AD, lepton —0.006 £ 0.045 0.02 At (ps :
AD, kaon 0.024 £ 0.033 0.01 o
AD, NT1 —0.086 %+ 0.068 0.00
AD. NT2 _ 0.100 £ 0.060 0.00 A
Bac]kground properties f
7, mixing bkgd [ps] 0.853 £ 0.036 —0.01 4000 —
f(r =0), mixing bkgd, lepton 0.05 £ 0.10 0.01 ; ?/\* a)
f(7 = 0), mixing bkgd, kaon 0.42 £0.05 0.01 © i I\ )
f(r =0), mixing bkgd, NT1 0.33 £ 0.08 0.01 = 5 'o' \ b
f(r = 0), mixing bkgd, NT2 0.32 +0.08 0.01 = . f .
Background resolution function ) % 2000 { \ -
S1 (core) 1.211 £ 0.043| 1.131 £0.046|—0.00| 0.00 g L " * i
by (At) (core) —0.135 =+ 0.031|—0.015 % 0.038 | —0.00 | —0.00 = i / \ |
f3 (outlier) 0.022 £ 0.004| 0.036 &£ 0.007(—0.01| 0.02 ’} \
Background dilutions O""""”mm"w' """"""" .\.\‘ i
(DY, 1lepton, T =0 0.0x£29 ~0.02 055~ 553 554 556 558 33
(D), kaon, 7 =0 0.52 £ 0.08 —0.03 megg (GeV/c?)
(D), NT1, 7 =0 0.67 +0.27 —0.01
(D). N2, 7 =0 —0.05£0.13 ~0.00 No matter how you get the background
(D), 1lepton, T > 0 0.34 £0.13 0.02
(D). kaon, 7 > 0 0.26 +0.06 0.04 parameters, you have to know them anyway.
(D), NT1, 7 >0 —0.13+0.11 0.01 . o .
(D). NT2, 7 > 0 0.12 0,031 0.01 Could equally well first fit sideband only, in a

separate fit, and propagate the numbers
PRD 66 (2002) 032003 But then you get to propagate the statistical

errors (+correlations!) on those numbers
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Mixing Likelihood Fit Result

(9P
S
§ Amix (At ) = xunmixed (At) + Nmixed (At )
P unmixed (At) - Nmixed(At)
g ~(1- 2<w>) cos(AmAt)
S | ———— .
© < BABAR b)
2 o b %
al 1 2< > : N . S
— (W /
-0.5 L 7/ Am X_ N
k Am,=0.51620.016+0.010 ps™ 4
-10*11'5‘ 0 115.1.120

|Atl (ps)



Measurement of CP violation in B>J/pKq

0.56 AZ " .
At = Az/ypC

1. Fully reconstruct one B meson
in CP eigenstate (Brgc)
2. Reconstruct the decay vertex

6. Fit the At spectra of B® and B tagged events
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At Spectrum of CP events

perfect : realistic
flavor tagging & time resolution mis-tagging & finite time resolution
0 5o 0 0
Btag= B Btag= B
" i ? * Decoay Tinzlz Diffesrence ereco-ta:go) (ps) N v ? = Decoay Tin?lz Diffeience Z;:co-ta; (ps)

CP PDF

AT,

uﬁm J sin2f(1-2wpin¢le )]

Mistag fractions w fé@ﬁj =
And a
resolution function R

41
Bd

determined by the
flavor sample

v
Hit)/z,
64TB x(lt(l—Z\m)CAS( ; )]
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Most recent sin2f3 Results: 227 BB events

5‘200 f‘
S S 200
~ ~
z z
2 2
= =

=
tn
=
tn

Raw asymmetry
=

Raw asymmetry
)

=
th
=
th
T T T

...............

sin2f3 = 0.722 + 0.040 (stat) = 0.023 (sys)

¢ Simultaneous fit to mixing sample and CP sample
¢ CP sample split in various ways (Jhp Kq vs. Jp K|, ...)
¢ All signal and background properties extracted from data

S7



CP fit parameters [30/fb, LP 2001]

TABLE XVI: Parameters for the combined likelihood fit to the Bep and Bgay samples. The first major column contains the
fit results, while the second major column contains the correlation coefficients with respect to sin2/3 for each fit parameter.

Parameter

Fit Result

| Correlation

Run 1 [ Run 2 | Run 1] Run 2

sin2f3 0.59 £0.14 |
Signal Resolution Function
51 (core) 12101 T1£01 | 0.018] 0.020
b1(At) lepton (core) 0.07 £0.12 0.04 £0.16 0.008] 0.045
by (At) kaon (core) —0.26 £0.08 | —0.18+0.09 | 0.002| 0.021
bi(At) NT1 (core) —0.21 £0.15 —0.33£0.21 0.004| 0.001
b1 (At) NT2 (core) —0.31 £0.11 —0.17 £ 0.15 [—0.001|—-0.002
ba(At) (tail) —-1.7£15 —-33x£28 0.001]| 0.006
fa(tail) 0.08 £ 0.06 0.04 £0.04 0.009]| 0.005
fa(outlier) 0.005 £ 0.003| 0.000 £ 0.001|-0.001| 0.000
Signal dilutions
7D}, Tepton 082 £0.03 —0.042
(D), kaon 0.65 £ 0.02 —0.083
(D), NT1 0.56 £ 0.04 —0.015
(D), NT2 0.30 £ 0.04 —0.032
AD, lepton —0.02 £0.04 0.010
AD, kaon 0.04 £0.03 0.005
AD, NT1 —0.11 £ 0.06 0.014
AD, NT2 0.12 £ 0.05 —0.008
Background properties
7, mixing bkgd [ps] 1.3+0.1 —0.001
f(r =0), CP bked 0.60 £0.12 —0.011
f(r =0), mixing bkgd, lepton 0.31 £0.10 —0.001
f(7 = 0), mixing bkgd, kaon 0.65 £ 0.04 —0.001
f(7 = 0), mixing bkgd, NT1 0.62 £ 0.06 —0.001
f(7 = 0), mixing bkgd, NT2 0.64 £0.04 —0.001
Background resolution function
S (core) 1.5£0.1 1.3x+0.1 0.004|—-0.003
by (At) core [ps] —0.16£0.03 | 0.0240.04 | 0.000[{—0.001
fa2(outlier) 0.016 £0.004| 0.017 £0.005(-0.001| 0.000
Background dilutions

(D), lepton, 7 =0 0.33 £0.27 0.003
(D), kaon, T =0 0.45 £ 0.03 0.008
(D), NT1, 7 =0 0.25 £0.10 0.002
(D), NT2, 7 =0 0.11 £ 0.06 0.003
(D), 1epton, 7 > 0 0.33 +0.14 0.000
(D), kaon, 7 > 0 0.24 £ 0.06 0.000
(D), NT1, 7 >0 0.05£0.14 —0.001
(D), NT2, 7 >0 0.09 £ 0.09 0.000

*Compared to mixing fit, add 2 parameters:
*CP asymmetry sin(2p),
*prompt background fraction CP events)
*And removes 1 parameter:
* Am
*And include some extra events...

*Total 45 parameters
20 describe background
1 is specific to the CP sample
8 describe signal mistag rates
*16 describe the resolution fcn
*And then of course sin(2b)

*Note:
*back in 2001 there was a split in run1/run2,
which is the cause of doubling the resolution
parameters (8+3=11 extra parameters!)

CP fit is basically the mixing fit, with a few more events
(which have a slightly different physics PDF), and 2 more parameters... |g




Consistent results when data is split by decay mode and

B JIyKg (n*m)

B%— JIyKg (n°n)

B%— y(2S)K,

[

tagging category

0.79 = 0.05

0.65+0.12

—%—0.88 £ 0.15

B 7. Ks —=——  0.69+0.23

B%— n.K—=—— 0.17 + 0.25

B°— JIyK, 0.57 + 0.09

B’ JIyK (Kgn%) m + 0.69 + 0.32

All uha 0.72 + 0.04
X?=11.7/6 d.o.f.

Prob (x?)=7%

Lepton tag ‘—l“‘ 0.75 + 0.08
Kaonl tag ";—' 0.75 £ 0.08
Kaonll tag '—i'—' 0.77 = 0.09
K tag '—h—' 0.77 £ 0.15
n tag 'i—l—e-% +0.22
Other ; 0.23 £ 0.51
All tags Gi* 0.75 £ 0.04
X?=1.9/5 d.o.f.

Prob (x?)=86%
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Commercial Break
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This talk comes with free software that helps you

do many labor intensive analysis and fitting tasks
much more easily

RooFit

A general purpose tool kit for data
modeling

Wouter Verkerke (NIKHEF)
David Kirkby (UC Irvine)
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RooFit at SourceForge -
roofit.sourceforge.net

I [=1 |
Favorites Tools Help ‘
GBack ~ = - @D (2] 4| Qoearch [Favorites Pveda B | B S ] - =

Address [&] http:/jroofit.sourceforge.net

/2 Home Page of the RooFit Toolkit for Data Modeling - Microsoft Internet Explorer

File Edit View

| @0 |unks >

-

The RooFit Toolkit for Data Modeling

Intro | Getting Started | Documentation | Support | News | Summary E

The RooFit packages provide a toolkit for modeling the expected distribution of events in a
physics analysis. Models can be used to perform likelihood fits, produce plots, and generate "toy
Monte Carlo" samples for various studies. The RooFit tools are integrated with the object-oriented
and interactive ROQOT graphical environment.

RooFit has been developed for the BaBar collaboration, a high energy physics experiment at the
Stanford Linear Accelerator Center, and is primarily targeted to the high-energy physicists using
the ROQT analysis environment, but the general nature of the package make it suitable for
adoption in different disciplines as well.

Quick Tour

Have a look at our 10 page RooFit web slide show, to see what RooFit can do.

o

Egents

- \ [} =l
(WS¢ mE B 1sam

723 A

| (Bunetwork and Dial.. [[&Home Page of t...

b ¥ & || Erootzo02 | @rootzo01

Code access
—-CVS repository via pserver

—File distribution sets for
production versions

\_

S

RooFit available at SourceForge
to facilitate access and
communication
with all users

Current directory: [SourceForge] / roofit / RooFitCore

=l x|
Fle Edt View Favortes Took Help [
Back v = -QJ 4 | Qsearch (GFavorites @veda 4| - S & - 2
address [ ] http:/fcvs.sourceforge.netjcgbinjviewcys cajroofitRooFtCore] =] @0 |unks
=

|

File Rev. Age Author  Lastlog entry
3 Attic/ [Don't hide
GNUmakefile 1.10 6 days wverkerke o GNUmakefile - Put notice for non-Babar users in this makefile
GNUtmakefile. standalone 18 6 days wverkerke o GNUMakefile. standalone - Fix some typos
LICENSE 12 5Sweeks verkerke o LICENSE - Minor formatting. Current version copied to roofit. sourcefor...
README 19 6 days wverkerke o README - Minor editing
RoolDTable.cc 1.14 5weeks vwerkerke o Allfiles - Fix aesthetic detail in new headers
Roo1DTable.rdl 113 5weeks vwerkerke o Allfiles - Fix aesthetic detail in new headers
RooATCRegstry.cc 112 5weeks vwerkerke o Allfiles - Fix aesthetic detail in new headers
RooAICRegistry.rdl 16 Sweeks verkerke o Allfiles - Fix aesthetic detail in new headers
Roohbshrg.cc 1.76 11days verkerke o RooAbsArg - Add cyclical call protection to recursiveRedirectServers...
SourceForge.net: Project Filelist - Microsoft Internet Explorer oy =] )
.| Fle Edt View Favorites Tools Help ‘
| <Back + = - @ 4 | Qsearch [ilFavortes vedia <4 | BN S (0] - =]
| address [&] » _id=59715 =] @0 |Lnks >
— T
.| New User via SSL . . o . " . =
“search_ Project: RooFit toolkit for data modelling: File List
Software/Group <
| | [search B
SR Summary | Admin | Home Page | Forums | Tracker | Bugs | Support | Patches | Lists | News | CVS| Files |
Rookb:
= SF.net Resources
=] Roohb:| - site Docs Below is a list of all files of the project. Before downloading, you may want to read Release Notes and Changelog (accessible
= | - Site Status by clicking on release version)
EL“M" - Site Map
FS~w | . Compile Farm
Release 1 Date
H m & (| - Project Help Wanted Package Filename .
o M e i & Notes Size D/L Arch. Type
- Contact Support RooFitCore
v01-00-01 2002-10-04 00:00
ring e-business b RooFitCore_V01-00-01.tgz 317951 16 Platform-Independent Source .gz
Most Active RooFitModels
1 Gaim ¥01-00-01 2002-10-04 00:00
2 phpMyAdmin RooFitModels_V01-00-01.tgz 41056 9 Platform-Independent Source .gz
3 SquirrelMail
4 JBoss.org —
5 Compiere ERP + CRM Project Totals: 2 2 359007 25
Business Solution
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RooFit at S

7 Slide 40 - Microsoft Internet Explorer
Fie Edt View Favorites Tooks Help

ourcefForge - Documentation

sk - > - Q) [0] 21| Qusench (ravates Gwesn 3] - & (0 -

Address [€] http:jraofit sourcef ide40.html

RooFit Tutorials
t0verview | Begin | 10 | 20| 30 | 40 | 50 | 60 | 70 | End

Slide 40

File Edt View Favorit

Discrete functions

- Signal, sideband

mass windows S
ome Pagelofithe Rog a Modeling 0s0 ore X| - RooThresholdCategory ;"’”
| + Defines regions of Ly
wBack + = - D A a4 CGiFavorites @ivedia (3| B S [ - 5 a real variable stof-
ol
Address [&) http:jroofit.sourceforg: findex.html ] P |unks > o
= o

' Mass variable o K

3 hoRealVar m{*“m”,”mass,0,10.) ; ___M
RooFi1t Documentation : : 1

Tutorials

tMain | Intro | Tutorials | Class Reference | Versions | External

The two principal components of the RooFit documentation are

' Define threshold category

| @rotz001 | (@network and Dial..

Class Reference

RooFit core design philosophy
* Composite functions — Composite objects

e fws)  g(y)  —— feG)D =fonz)
To s

=2 i+ 5

oo s] 5

&

soosr:
com

If you are new to RooFit, start with the
introductory tutorial to learn the basic

interface.
Rl v At ey et e P PV
b > ) || Erootzo0z | Eirootzont

| @unetwork and Dial... [ Home Page of t...

class RooMinuit : public TObject

O
gethPar() const
Double & getPdfParamErr.
Double & ge ranya,
ofstrean logfile() oconst

void profilestart()

Class Description

Roowinuit is a wrapper olass around TFitter/TMinuit th:
provides a seamless interface between the MINUIT funct:
and_the native RooFit interface.

The class reference is auto-generated from

the source code and is the authorative

reference on the public interface for each

class. Inline comments in the code are &

brmmelabad Thoa uarciam Am bas DAACE wak

PSSR0V 17an

« You can use discrete variables to describe cuts, e.g.

Sig Sideband
.

|[&stide 40 - Micro..

PO S VO VU U

hoThresholdCategory region(“region’”, “Region of M”, m,"Background’) ; |
:gion. addThreshold (9.0, “SideBand”) ;

Nefailt atate

VSEHES, D@ zan

| Poo ks »

RooFit Class Index
*Docs | All | Real | Category | PDF | DataSet | Plot | Container | Misc | Aux | User

© Toolkit .
private:

RooMinuit RooMinuit(const RooMinuits)

ey Index

i i
© ROOIDTEBLE «evvvrrrrnnnnns 1-dimensional table
* RooZDKeysPdf . . Non-Parametric Multi Variate KEYS PDF
* Roolbshrg .. Abstract variable
= * RooibsBinning Abstract base class for binning specification
* RoolbsCategory . Abstract index variable
* RooibsCategoryLValue . Mbstract modifisble index variable
« RooibsCollection . Collection of RooAbsirg ohjects
RooibsData . Abstract data collection

RoodbsFunc . . Mbstract real-valued function interface

RooibsGoodnessOfFit
i 1

RoolbsIntegrator

RooibsLValue ... a

nessOfFit ... Abstract real-valued variable

Abstract PDF with normalization support

[[&)Gass 1t - picrosor...

. ibstract context for generating a dataset from a PDF

Abstract real-valued variable

Abstract hidden real-valued variable
Abstract interface for real-valued function integrators

. Mbstract variable

ol
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The End

¢ Some material for further reading
m http://www.slac.stanford.edu/~verkerke/bnd2004/data_analysis.pdf

= R. Barlow, Statistics: A Guide to the Use of Statistical
Methods in the Physical Sciences, Wiley, 1989

m L. Lyons, Statistics for Nuclear and Particle Physics,
Cambridge University Press,

s G. Cowan, Statistical Data Analysis, Clarendon,
Oxford, 1998
(See also his 10 hour post-graduate web course:
http://www.pp.rhul.ac.uk/~cowan/stat_course)
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