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Abstract

This note reviews the definition, calculation, and interpretation of p values
with an eye on problems typically encountered in high energy physics. Special
emphasis is placed on the treatment of systematic uncertainties, for which several
methods, both frequentist and Bayesian, are described and evaluated. After a
brief look at some topics in the area of multiple testing, we examine significance
calculations in spectrum fits, focusing on a situation whose subtlety is often not
recognized, namely when one or more signal parameters are undefined under
the background-only hypothesis. Finally, we discuss a common search procedure
in high energy physics, where the effect of testing on subsequent inference is
incorrectly ignored.
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8 2 BASIC IDEAS UNDERLYING THE USE OF P VALUES

1 Introduction

The use of p values is ubiquitous in high-energy physics, appearing in such problems as
validating a detector simulation, determining the degree of a polynomial used to model
a background shape, identifying outlying data points, and quantifying the significance
of a new observation. Issues that arise in these contexts involve analysis optimization,
incorporation of systematic uncertainties, summarizing or combining the outcomes of
multiple, possibly correlated tests, computational techniques, and correct interpreta-
tion of results within a chosen statistical paradigm. This paper attempts to provide
an overview of these questions from a statistical standpoint, but with emphasis on
applications in high-energy physics.

Six sections follow this introduction. Section 2 provides some preliminary definitions
and interpretations, and discusses an example that will recur throughout the paper.
We then examine in section 3 possible misuses of p values, difficulties that arise when
they are compared with other measures of evidence, and their behavior as a function
of sample size. Section 4 presents seven methods for incorporating systematic uncer-
tainties in p values: conditioning, supremum, confidence interval, bootstrap (plug-in
and adjusted plug-in), fiducial, prior-predictive, and posterior-predictive. The coverage
and asymptotic behavior of these methods are compared. Techniques for combining p
values and performing multiple tests are described in section 5. Next, section 6 applies
some p value methods to a problem of spectrum fitting common in high-energy physics,
in which one wishes to compare two fits: one to a smooth background, and a second
one to background plus a Gaussian resonance describing some signal process. The issue
is to quantify any improvement in goodness-of-fit. Proper treatment of this problem
starts with the recognition that some signal parameters, namely the Gaussian mean
and width, are undefined under the background-only hypothesis. Finally, section 7 ex-
amines the effect of testing on subsequent inference. This issue is particularly relevant
for high energy physics search procedures, where the decision of what to report (an
upper limit or a two-sided interval) is usually made on the basis of the significance of
the observations.

A note about the list of references: several of these point to publications in pro-
fessional statistics journals such as Biometrika, Annals of Statistics, Annals of Mathe-
matical Statistics, the Journal of the Royal Statistical Society, and the Journal of the
American Statistical Association. Issues of these journals that are older than five years
can be accessed online through the JSTOR archive at http://www.jstor.org. Many
U.S. and non-U.S. universities subscribe to JSTOR. Fermilab, unfortunately, does not.

2 Basic ideas underlying the use of p values

Suppose we collect a sample of data x = (x1, . . . , xn), whose probability density func-
tion (pdf) is known apart from a (possibly multidimensional) parameter θ, and we are
interested in a particular value θ0 of θ. In the simplest case we wish to test whether
our data support the hypothesis that θ = θ0 rather than θ = θ1, where θ1 6= θ0 is

http://www.jstor.org


D
ra

ft
Ju

ne
13

,
20

07

9

another specific value of θ, perhaps suggested by a competing theory for the process
under study. This type of hypothesis test is referred to as “simple vs. simple”, since
the pdf of the data is completely specified under each hypothesis.

A more general situation occurs when θ1 is not specified and one is interested in
testing H0 : θ = θ0 versus H1 : θ 6= θ0. This is known as a two-sided hypothesis test,
since under H1 the true value of θ could be either smaller or larger than θ0. It can
also be described as a “simple vs. composite” test, H1 being called composite because
it does not fully specify the pdf of the data. Another possibility is that θ represents
the difference between two physics parameters (think two particle lifetimes or masses),
and we are interested in which is larger: H0 : θ ≤ 0 versus H1 : θ > 0. This is
then referred to as a one-sided hypothesis test. In general, testing does not need to
be restricted to parametric problems: in goodness-of-fit testing for example, the null
hypothesis specifies a distribution for the data and one wishes to test this hypothesis
against unspecified alternatives.

A general approach to the study of these and other testing problems is to find a
test statistic T (X), i.e. a known function of the data X such that large values of
t = T (x), x being the observed value of X, are evidence against the null hypothesis
H0. A standard way to “calibrate” this evidence is then to calculate the probability
for observing T = t or a larger value under the null hypothesis; this tail probability is
known as the p value of the test:

p ≡ IPr(T ≥ t |H0). (2.0.1)

Thus, small p values are evidence against H0. Needless to say, complications arise in
the presence of systematic uncertainties. The latter are usually modeled by introduc-
ing a (possibly multidimensional) nuisance parameter ν, representing for example an
energy scale, a tracking efficiency, or any other quantity that is needed to make infer-
ences about the parameter of interest θ but about which knowledge is limited. In this
situation the probability in equation (2.0.1) is no longer uniquely defined, and there
are various ways, frequentist and Bayesian, for dealing with this ambiguity. Even in
the absence of nuisance parameters, a similar ambiguity affects the determination of p
values in one-sided hypothesis tests.

Although the basic definition of p values as tail probabilities is straightforward,
their interpretation in a testing context is surprisingly subtle.[59] One can approach
this issue from three different points of view: significance testing according to Fisher,
the frequentist theory of hypothesis testing as formulated by Neyman and Pearson,
and the Bayesian critique of p values.

Fisher viewed the p value as a measure of evidence against the null hypothesis, as
an objective basis for one’s disbelief in it. A small p value presents us with the logical
disjunction that either the null hypothesis is false or an extremely rare event has
occurred. Therefore, the interpretation of p values requires inductive inference, leading
from a particular observation to a statement about a general theory. However, although
experimental results can disprove a hypothesis, they can never prove it, and conclusions
of significance tests can always be revised or confirmed by further measurements.
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10 2 BASIC IDEAS UNDERLYING THE USE OF P VALUES

In contrast with Fisher, frequentists are mainly concerned about long-term error
probabilities, either incorrectly rejecting the null hypothesis H0 (Type I error), or in-
correctly accepting it (Type II error). The standard frequentist test procedure consists
in selecting a Type I error α and delimiting a critical region of sample space that has
probability α of containing the data under H0. In order to avoid bias, this construction
must be done in advance of looking at the data. The null hypothesis is then rejected
if the data falls in the critical region. In the simplest case the critical region can be
represented as T ≥ tα, where T is a test statistic and tα a constant that depends on α.
It is easy to see that the statement t ≥ tα can be rewritten as p ≤ α, where p is the p
value defined in equation (2.0.1). The usefulness of the frequentist test procedure then
depends on whether the relevant p value is exact, conservative, or liberal:

p exact ⇔ IPr(p ≤ α |H0) = α,
p conservative ⇔ IPr(p ≤ α |H0) < α,
p liberal ⇔ IPr(p ≤ α |H0) > α.

These labels obviously depend on α, so that it is in principle possible for a p value
to be conservative for some values of α and liberal for others. In a large number of
independent tests using the same α and for which H0 is true and the p value everywhere
exact, the fraction of tests that reject H0 will tend to α as the number of tests increases.
On the other hand, if the p value is conservative or liberal, then the actual Type-I error
rate of the test will be smaller or larger, respectively, than stated. While it is clear that
understating the Type-I error rate is undesirable, overstating it can be bad too, as it
is usually accompanied by a reduction in power, i.e. in the ability to detect the truth
of an alternative hypothesis. This being said, conservatism is often unavoidable, either
because the test statistic is discrete or because of the presence of nuisance parameters.

The notions of conservatism and liberalism are also important in significance testing,
although their respective dangers are of a different nature. Indeed, a conservative p
value is dangerous because it may give one too much confidence in a bad model, whereas
a liberal p value, by forcing a search for plausible alternative models more often than
necessary, is less likely to lead to bad inferences.

The difference between hypothesis and significance testing tends to be blurred by
practitioners, and yet it is an important one. Significance tests tell us which experi-
mental results are interesting, namely those for which p is less than some threshold.
However, the relation between this threshold and a long-term error rate, the focus of
frequentist inference, is irrelevant to the evidential character of p. On the other hand,
hypothesis tests are predicated on the assumption of repeated testing and are therefore
best suited for problems of quality control, such as selecting a sample of good quality
electron candidates in a particle physics experiment. In a sense the test criterion pre-
sented above, p ≤ α, is very misleading, since it compares two completely unrelated
concepts, a measure of evidence p and a long-term error rate α. The only correct
interpretation of that inequality is as a clumsy rephrasing of the statement that the
observation lies in the critical region, t ≥ tα. In a hypothesis test setting it would
make no sense to report both α and p since the only valid error rate is α. Similarly, in
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significance testing it would be pointless to report an error probability in addition to
p since the former does not characterize the evidence against H0 in any way.

We now turn to the Bayesian use of p values. A Bayesian’s primary interest is not
in the behavior of a test procedure under a large number of replications, but rather
in the direct evaluation of hypothesis probabilities. In many situations, p values tend
to underestimate hypothesis probabilities, leading to conflicts with Bayesian inferences
(see section 3). However, most pragmatic Bayesians are willing to consider p values
as “exploratory tools” or “measures of surprise”[6], capable of indicating that a given
hypothesis provides an inadequate description of the data and that more plausible
alternatives should be investigated. From this point of view, the conflict is mainly
an issue of p value calibration. A more fundamental standpoint is that the evidence
provided by p values is based not only on the data observed, but also on more ex-
treme data that were not observed. Inferences derived from p values therefore violate
the likelihood principle, insofar as the form of the likelihood function itself is beyond
suspicion.2 A more moderate point of view is that p values are just a computational
summary of the extremeness of the data with respect to model expectations, and that
a more informative approach would consist in plotting the observed data on top of an
appropriate reference distribution.[50] This is one possible interpretation of the prior-
and posterior-predictive formulations of model assessment in the Bayesian paradigm
(see sections 4.7 and 4.8 for details).

In any case, Bayesians have developed their own, more orthodox measures of sur-
prise, some of which are based on concepts from information theory (see section 3.7).
Unfortunately these other measures are far less popular than p values, and the latter
certainly seem destined to remain part of the statistical toolbox of many scientists for
the foreseeable future.

As with other statistical techniques, non-Bayesian uses of p values can benefit from
combination with Bayesian methods, especially in the area of nuisance parameter elim-
ination. This aspect of p values will be examined in section 4.

2.1 The choice of null hypothesis

In most experiments the null hypothesis is easily identified. A typical situation might
involve a distribution of observed data that depends on a parameter θ, and we are
interested in a particular value θ0 of θ. In testing θ = θ0 versus θ 6= θ0, only the first of
these hypotheses fully specifies a pdf for the data, allowing the calculation of a p value.
The null hypothesis must therefore be H0 : θ = θ0. In a one-sided test however, say
θ ≤ θ0 versus θ > θ0, neither hypothesis fully specifies the data pdf. One possibility
in this case is to calculate the p value as a function of θ and maximize it over the θ
region defined by the null hypothesis. If this recipe works equally well on both sides of

2There is a large area of statistical testing methodology, known as model checking, where the object
of the test is the family of pdf’s describing the data, rather than just a parameter labeling that family.
In this case the form of the likelihood function itself is uncertain and the likelihood principle cannot
be invoked.
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θ0, additional considerations are needed to decide which hypothesis should be the null.
The same issue affects the testing of simple versus simple hypotheses.

An example from high-energy physics will help illustrate some of the ideas involved.
An alternative to the standard model of particle physics postulates that the mass of
the top quark is above 230 GeV/c2, and that the so-called top events observed by the
Tevatron experiments are really due to an exotic quark of charge Q = −4/3 at the
reported mass of ∼ 175 GeV/c2. [22] Furthermore, it is known that the standard and
exotic models explain all other electroweak data equally well. One way to test the
exotic model is to measure the quark charge in the observed events, which is Q = 2/3
if the standard model is correct. Which hypothesis should be the null, Q = 2/3 or
Q = −4/3? The temptation may be to choose the latter, because a small p value
under the exotic model would allow the experimenter to claim rejection of that model
“at the observed significance level p”. Consider the following however. The exotic
model is more complex than the standard model since it contains (at least) one more
quark. So, even though both models explain all other data equally well, the exotic
model has a priori less explanatory power because it requires more parameters. From a
scientific point of view we prefer the more parsimonious standard model, and therefore
need to control the risk of incorrectly rejecting it. This can only be achieved by choosing
the null hypothesis to be the standard model (Q = 2/3) and selecting a small value for
the threshold α. If one adopts Neyman’s frequentist point of view, one should consider
as the null hypothesis “the one by which the errors of the first kind are of greater
importance than those of the second.”[75]

The above argument is particularly important in situations where the data lack
power to discriminate between the two hypotheses. In the context of the top charge
example, the p value against the exotic model would then likely be as large as the p
value against the standard model. In this case it is clearly better to fail to reject the
standard model than to fail to reject the exotic model.

If one really has no a priori grounds for preferring one hypothesis over the other, a
more natural option is to calculate a likelihood ratio or Bayes factor (see section 3.7).

2.2 The σ scale for p values and the 5σ discovery threshold

Very small p values have little intuitive appeal in terms of how far the observation is
from the bulk of the distribution. For example, a factor of 10 change in the p value
usually corresponds to a larger shift of the observation when the latter is close to the
bulk than when it is far in the tail. To compensate for this nonlinearity, physicists
conventionally map an observed p value to the corresponding number Nσ of standard
deviations a standard normal variate would have to be from zero for the probability
outside ±Nσ to equal p:

p = 2

∫ +∞

+Nσ

dx
e−x2/2

√
2π

= 1 − erf
(
Nσ/

√
2
)
, (2.2.1)
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where erf(x) is the standard error function:

erf(x) =
2√
π

∫ x

0

e−t2 dt. (2.2.2)

Table 1 illustrates the σ scale derived from equation (2.2.1) for a few simple cases. We

Nσ p Nσ p

1 3.17× 10−1 3.89 0.0001
2 4.55× 10−2 3.29 0.001
3 2.70× 10−3 2.58 0.01
4 6.33× 10−5 1.96 0.05
5 5.73× 10−7 1.64 0.1
6 1.97× 10−9 1.28 0.2

Table 1: Correspondence between p values and numbers of σ for some simple examples.

emphasize that this procedure of referencing a p value to a Gaussian distribution is
just a convention. Interpreted literally, it could be very misleading if the observations
are not truly Gaussian. For example, an observation corresponding to a p value of
5.73×10−7, while only 5σ in the tail of a Gaussian distribution, is more than 14σ away
in the tail of an exponential distribution!

The factor of two in front of the integral in equation (2.2.1) guarantees that Nσ is
always positive, even when p > 1/2. It is sometimes suggested that this factor should
be removed in one-sided problems such as those involving Poisson statistics. This is
a needless complication. As noted above, the σ scale for p values is a convention,
and conventions are better kept as general as possible. If two experiments use different
methods to measure the same effect, one based on a one-sided statistic and the other on
a two-sided statistic, comparisons between the measurement results should not depend
on how one chooses to represent p values.

The threshold for discovery in high energy physics is usually set at 5σ, which may
seem considerably stricter than standard practice in some other sciences. Nevertheless,
after comparing the evidence provided by p values with that provided by lower bounds
on Bayes factors, reference [10] argues that the “commonly perceived” rule of thumb
for interpreting p values should be replaced by a more stringent one:

p Value Interpretation in terms of evidence against H0

Common rule Revised rule

Nσ = 1 Mild None
Nσ = 2 Significant Mild
Nσ = 3 Highly significant Significant
Nσ = 4 Overwhelming Highly significant
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with the caveat that even the revised rule may overstate the evidence againstH0. Ignor-
ing this important caveat, a 5σ effect would be considered overwhelmingly significant
under the revised rule. Whatever one may think of this, there are several additional
reasons for imposing a high discovery standard in high energy physics:

1. P value calculations are often based on parameter estimates whose uncertainties
are incorrectly assumed to be Gaussian way out in the tails of the distribution.
This assumption of Gaussian scaling is typically made when computing p values
by the Monte Carlo method.

2. Systematic effects are not always easy to identify, let alone to model and quantify.
In fact, a null hypothesis is almost never exactly true. The modeling of hypothe-
ses in high energy physics requires Monte Carlo simulations of non-perturbative
processes that can only be done approximately. Given a large enough data sam-
ple, the resulting deviations from exactness will almost certainly lead to small p
values, regardless of the truth or falsity of the underlying physical theory.

3. Even when systematic effects are correctly identified and understood, the eval-
uation of their magnitude often involves an additional uncertainty (e.g. due to
Monte Carlo statistics), which is either ignored or simply added in quadrature
to the estimated magnitude. However, this uncertainty on an uncertainty may
affect more than just the size of the original uncertainty, by distorting the very
shape of the resulting distribution of uncertainties. As an example of how this
may come about, consider the estimation of the mean µ of a Gaussian popula-
tion. If the true standard deviation σ is known, a 68.27% confidence interval on
µ is given by x̄ ± σ/

√
n, where n and x̄ are the sample size and mean. More-

over, confidence intervals with 95.45% and 99.73% coverage can be obtained by
simply doubling, respectively tripling the length of the standard interval. On the
other hand, if σ must be estimated by the sample standard deviation s, then the
68.27% confidence interval becomes wider, namely x̄ ± t0.84 s/

√
n, where t0.84 is

the 84th percentile of Student’s t distribution. Furthermore, the Gaussian scaling
law no longer applies, and doubling the interval length yields less than 95.45%
coverage.

4. Large sample sizes are becoming more common in high energy physics. As shown
in section 3.3.3, when compared with Bayesian measures of evidence, p values
tend to over-reject the null hypothesis as the sample size increases, and this
effect is unrelated to the inexactness of null hypotheses mentioned previously.

5. The “look-elsewhere” effect: in some data analysis strategies one looks in several
places before finding an unexpected observation somewhere, and it is not always
easy to quantify the resulting dilution of significance.

6. The credibility of major HEP experiments is at stake. This means that one may
be interested in the expected fraction Q of false discoveries in the set of claimed
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discoveries. Given a significance threshold α, Nt true null hypotheses tested,
and Nc claimed discoveries, one has Q = αNt/Nc, a number which can be much
larger than α if Nt is large. Unfortunately Nt is unknown, and therefore so is Q.
As shown in Ref. [91] however, it is possible to compute an upper bound on Q,
namely Qmax = [(N/Nc) − 1]/[(1/α) − 1], where N is the total number of tests.
Suppose for example that one of the LHC experiments makes 1000 searches for
new physics in the course of its lifetime, and that it ends up with 10 discovery
claims. If these discoveries are based on a 3σ significance threshold, Qmax = 27%,
not a very reassuring constraint. On the other hand, at the 5σ level one finds
Qmax = 0.0056%.

7. It is sometimes necessary to consider one’s prior degree of belief in the null
hypothesis.[69] In a test of the law of energy conservation for example, prior
belief in the validity of that law would be very strong, and the rejection threshold
would be set very high, perhaps even higher than 5σ, independently of the other
reasons for a high threshold.

It is clear that some of the above arguments could be circumvented by a more careful
study of systematic effects and analysis strategy. In any case, many statisticians will
caution against too high a discovery threshold, on the grounds that the fundamental
assumption of experimental high energy physics — that our observations are Poisson
distributed — is not exact. The final event samples used in physics analyses result
from applying very stringent selection cuts on a very large number of collision events.
Thus, the underlying statistical process is actually binomial with sample size N and
probability of success p. In the limit where N → ∞ and p → 0 in such a way that
the product pN remains constant, the binomial distribution becomes Poisson with
mean λ = pN . [21, pg. 93-94] For large N and small p this is only an approximation,
albeit a good one. The validity of the binomial assumption itself is rooted in the
essential randomness of quantum processes and is therefore rarely questioned. As a
result, investigations of the validity of the Poisson hypothesis have not been done
in accelerator settings, in contrast with experiments involving radioactive decay and
background radiation. [29]

2.3 A simple numerical example

The recent observation by the CDF Collaboration of a resonance in the J/ψπ+π−

mass spectrum near M = 3872 MeV/c2 [2] provides an interesting statistical challenge
due to the sheer magnitude of its significance. Indeed, the significance quoted in the
PRL [2], 11.6 standard deviations, is too small a probability to be verified with the
help of Monte Carlo pseudo-experiments. One must therefore rely on testing methods
that involve statistics with known distributions and that are simple enough to be
computable by numerical quadrature. The same comment applies to methods for
incorporating systematic uncertainties, the usual technique of “Monte Carlo smearing”
being impractical. Although systematic uncertainties are not a major concern in the
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X(3872) analysis, one would still like to know what technique, if any, is available to
handle systematics in this type of situation.

When the location and width of the signal peak are known before looking at the
data, the significance calculation can be based on the expected background and the
observed event count in an a-priori chosen window around the signal. In the PRL [2],
the window consists of the three bins centered on the peak. The width of this window
is 15 MeV/c2, to be compared with the 4.3 MeV/c2 signal width. Assuming Poisson
statistics, the probability for the expected background of 3234 events to fluctuate up
to the observed 3893 events, or more, is:

p =
∞∑

n=3893

3234n

n!
e−3234. (2.3.1)

Given the size of the numbers involved, this is a delicate computation. In the next two
subsections we first attempt an exact calculation of this p value and then check it with
some easily derived bounds and approximations.

2.3.1 Exact calculation

A good way to avoid numerical difficulties with the sum in (2.3.1) is to make use of
the relationship between the upper tail of the Poisson density and the lower tail of the
chisquared density; in mathematical terms:

+∞∑
i = n

νi e−ν

i!
=

∫ 2ν

0

tn−1 e−t/2

2n Γ(n)
dt for n ≥ 1, (2.3.2)

and in statistical terms:

If Y ∼ Poisson(ν) and X ∼ χ2
2n, then Pr(Y ≥ n) = Pr(X ≤ 2ν). (2.3.3)

We emphasize that this is an exact result that can be established by repeated integration
by parts [21, Example 3.3.1 on pg. 100]. In the present case we have ν = 3234 and
are interested in Pr(Y ≥ n), where n = 3893. So we have to calculate Pr(X ≤ 6468),
where X is a chisquared variate with 7786 degrees of freedom. This can be done with
the help of an incomplete gamma function with shape parameter n:

P (n, ν) ≡
∫ ν

0

tn−1 e−t

Γ(n)
dt. (2.3.4)

The CERN library provides a double precision routine dgapnc (entry C334), and all
we have to do is call

dgapnc( 3.893D+03, 3.234D+03 )
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(Note that the relationship between the chisquared and incomplete gamma involves
factors of two that conveniently cancel those occurring in the relationship between the
Poisson and chisquared.) The result is:

1.640× 10−29.

How can we check such a small number? An obvious possibility is to try the Gaus-
sian approximations to the Poisson and chisquared, since the Poisson mean and the
chisquared number of degrees of freedom are so big. Of course we are looking way out
in the tails, so we have to be careful.

2.3.2 Bounds and approximations

Writing ν and n0 for the expected and observed numbers of events, respectively, we
have:

1. Gaussian approximations to the Poisson:
One approach is based on the fact that

Z1 ≡ n0 − ν√
ν

(2.3.5)

is approximately standard normal. We find Z1 = 11.588, corresponding to a
one-sided tail probability of 2.365× 10−31.

A slightly improved calculation uses the property that if Y ∼ Poisson(ν), then√
Y is approximately normal with mean

√
ν and standard deviation 1/2. Thus

the variable
Z ′1 ≡ 2 (

√
n0 −

√
ν) (2.3.6)

is approximately standard normal. For the X(3872) analysis we find Z ′1 = 11.051,
corresponding to a one-sided tail probability of 1.080× 10−28.

2. Gaussian approximation to the chisquared:
A chisquared with 2n0 degrees of freedom is approximately Gaussian with mean
2n0 and variance 4n0. With the above relationship (2.3.3) between Poisson and
chisquared we therefore have that

Z2 ≡ n0 − ν
√
n0

(2.3.7)

is approximately standard normal. Now we find Z2 = 10.562, corresponding to a
one-sided tail probability of 2.237× 10−26.

3. Bounds on the correct p value:
A simple modification of the previous two approximations provides bounds on
the correct p value. First, it can be shown that the upper tail of a Gaussian with
mean ν−1/2 and variance ν is everywhere below the upper tail of a Poisson with
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mean ν. Similarly, the lower tail of a Gaussian with mean 2n0 − 2 and variance
2×(2n0−2) is everywhere above the lower tail of a chisquared with 2n0 degrees of
freedom. In these statements, the upper (lower) tails are assumed to start (end)
at the maximum of the distribution. The correct “number of σ’s” is therefore
bounded by Z ′′1 and Z ′2, where:

Z ′′1 ≡ n0 − (ν − 1/2)√
ν

= 11.597 (2.3.8)

Z ′2 ≡ n0 − 1− ν√
n0 − 1

= 10.547 (2.3.9)

or equivalently:

2.134× 10−31 < pcorrect < 2.615× 10−26. (2.3.10)

The dgapnc result satisfies this constraint.

4. Wilson and Hilferty’s Gaussian approximation to the chisquared:
This even better approximation to a chisquared with k degrees of freedom states
that [(

χ2
k

k

)1/3

+
2

9k
− 1

]√
9k

2
(2.3.11)

is approximately standard normal [93, Equation 16.14 on pg. 546]. Applying
(2.3.3), this translates into the variable

Z3 ≡

[
1 −

(
ν

n0

)1/3

− 1

9n0

]
√

9n0 (2.3.12)

for Poisson statistics. We find Z3 = 11.216, corresponding to a one-sided tail
probability of 1.705 × 10−29, remarkably close to the dgapnc result. It is in-
teresting to note that the Wilson and Hilferty approximation is also very good
for much smaller numbers of degrees of freedom. A good example is provided by
CDF’s 1994 paper describing evidence for the top quark, in which one calculates
the Poisson probability for observing 12 events or more when the mean is 5.7
[1, section VI.B.1]. Neglecting systematic uncertainties, the correct answer is
1.414%. Compare this to the Gaussian approximations to the Poisson: 0.416%
for Z1 and 1.565% for Z ′1, the Gaussian approximation to the chisquared: 4.994%,
and Wilson and Hilferty’s approximation: 1.435%. The latter is clearly superior.

3 Properties and interpretation of p values

The professional statistical community has had an interesting and at times colorful
history of discussions on the subject of p values. The latter were initially popularized
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by Fisher, but the subsequent development of the Neyman-Pearson theory of hypothesis
testing, by shifting the focus from p values to fixed-level tests, generated a great deal
of confusion and misunderstanding about the basic concepts.[59] Here is a list of some
of the more common misinterpretations of p values:

• The p value is the probability of the null hypothesis.

• One minus the p value is the probability of the alternative hypothesis.

• The p value is the probability of rejecting the null hypothesis when it is in fact
true.

• The p value is the probability that the observed results occurred by chance.

• The p value is the probability that the observed results will replicate.

• If the null hypothesis is true, and we keep testing it on a data sample of increasing
size, it will eventually become impossible to disprove it using p values.

• Small p values indicate that the data is unlikely under the null hypothesis.

All of the above statements are false. The following subsections attempt to clarify the
meaning of p values, mainly by showing what they are not.

3.1 P values versus Bayesian measures of evidence

A popular misunderstanding of p values is that they somehow represent the probability
of the null hypothesis H0 after the evidence provided by the data has been taken into
account. A simple example will illustrate the fallacy of this belief.[69] Consider a
particle identifier for pions, using dE/dx or the Cherenkov ring angle. For simplicity,
let us transform the relevant observable into a variate p that is uniform under the pion
hypothesis:

f(p |π) = 1 for 0 ≤ p ≤ 1.

With this convention, p is simply the p value under the null hypothesis that a given
particle is a pion. Next, assume that muons result in the following p distribution:

f(p |µ) = 1 − 0.1× (p− 0.5),

which is not too different from that for pions, since the pion and muon masses are simi-
lar, but is slightly more peaked at small p. Let ππ (πµ) be the fraction of pions (muons)
in the sample. These fractions can be interpreted as frequentist prior probabilities for
a particle to be a pion or a muon. The posterior pion probability is then:

IPr(π | p) =
ππ f(p |π)

ππ f(p |π) + πµ f(p |µ)
=

[
1 +

πµ

ππ

1

B

]−1

,
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where B ≡ f(p |π)/f(p |µ) is the likelihood ratio or Bayes factor in favor of the pion
hypothesis. In a sample of particles with equal numbers of pions and muons, the
posterior probability for a particle with p ∼ 0.1 to be a pion will be 1/2.04, which
is quite different from 0.1. With a perhaps more realistic particle composition of 100
times more pions than muons, that probability will be 100/101.04, even more different
from the p value of 0.1.

There is a substantial amount of literature on the relationship between p values
and posterior hypothesis probabilities (see [10, 20] and references therein). A major
issue is the choice of priors for the Bayesian side of this comparison, since p values are
independent of priors and may therefore appear more objective. One possible approach
is to compare a given p value to the smallest posterior hypothesis probability that can
be obtained by varying the prior within some large, plausible class of distributions.
This is the approach whose results we will summarize in the remainder of this section.
It is instructive to study separately one-sided and point-null hypothesis tests.

For the one-sided case, reference [20] considers the test H0 : θ ≤ 0 versus H1 : θ > 0,
based on observing X = xobs, where X has a location density f(x − θ). The density
f is assumed to be symmetric about zero and to have monotone likelihood ratio. The
following classes of priors are used:

• ΓS = {all distributions symmetric about 0};

• ΓUS = {all unimodal distributions symmetric about 0};

• Γσ(g) = {πσ : πσ(θ) = g(θ/σ)/σ, σ > 0},

where g(θ) is any bounded, symmetric, and unimodal density. The class Γσ(g) basically
consists of all scale transformations of g; a good example of the latter would be a
normal density with mean zero. Assuming that xobs > 0, theorems can then be proved
about the relation between the observed p value pobs and the infimum of the posterior
probability of H0 over a given class of priors:[20]

inf
π∈ΓUS

IPr(H0 |xobs) = pobs

inf
πσ∈Γσ(g)

IPr(H0 |xobs) = pobs

inf
π∈ΓS

IPr(H0 |xobs) ≤ pobs

These results, especially the first two, are quite remarkable. They seem to imply a
reconciliation between p values and objective Bayesian measures of evidence. Unfor-
tunately, as we will indicate next, this agreement does not generalize to other types of
testing problem.

For the point-null problem, reference [10] considers the test H0 : θ = θ0 versus
H1 : θ 6= θ0, based on observing X = (X1, . . . , Xn), where the Xi are independent and
identically distributed (iid) according to a normal distribution, N (θ, σ2), with variance
σ2 known; the usual test statistic is T (X) =

√
n |X̄ − θ0|/σ. The prior is of the form
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π(θ) = π0 if θ = θ0, and π(θ) = (1 − π0) g(θ) if θ 6= θ0, where g(θ) belongs to one of
the classes:

• GA = {all distributions};

• GS = {all distributions symmetric about θ0};

• GUS = {all unimodal distributions symmetric about θ0}.

The following theorems are then proved:

For tobs > 1.68 and π0 =
1

2
: inf

g∈GA

IPr(H0 |xobs)

pobs tobs

>

√
π

2
∼= 1.253

For tobs > 2.28 and π0 =
1

2
: inf

g∈GS

IPr(H0 |xobs)

pobs tobs

>
√

2π ∼= 2.507

For tobs > 0 and π0 =
1

2
: inf

g∈GUS

IPr(H0 |xobs)

pobs t2obs

> 1

These inequalities imply that p values are usually quite a bit smaller than various
lower bounds on the posterior probability of the null hypothesis, i.e. p values tend
to exaggerate the evidence against H0. Although this conclusion differs from the one
obtained for the one-sided study, one can argue that point-null testing is actually the
more common problem in high energy physics. When testing a new physics theory
against the standard model for example, one can often identify a parameter θ that
takes a particular value θ0 if no new effect is present. Thus one is really interested in
testing θ = θ0 rather than θ ≤ θ0. In any case, the wider implication from both the
one-sided and point-null studies is that there is no uniform calibration for p values.
Their interpretation depends on the type of problem studied. Later we will show that
it also depends on the sample size.

3.2 P values versus frequentist error rates

One sometimes hears statements to the effect that a reported p value pobs is the proba-
bility for rejecting the null hypothesis H0 when it is in fact true. These allegations are
usually justified by considering a long sequence of measurements in which H0 is always
true, and where one rejects H0 whenever the observed p value is less than pobs; in this
setup the fraction of wrong decisions about H0, i.e. the frequentist Type I error rate,
tends to pobs in the long run. Of course this reasoning only works if the error rate was
set to pobs before performing all the measurements in the ensemble. The problem then
is that for the real-life experiment the value of pobs was not known before the test, and
can therefore not be identified with an error rate. One might perhaps hope to save the
error rate interpretation of p values by only requiring that their expectation value over
some ensemble be equal to the nominal error rate α.[37] This is similar to a frequentist
confidence interval construction, where one only requires that the individual interval
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coverages, which are 0 or 1, average to the nominal coverage (for example 68%). Un-
fortunately the expectation value of all the p values in an ensemble of tests of a correct
hypothesis H0 is 1/2, and the expectation value of all the p values that result in the
incorrect rejection of H0 is α/2. Clearly, this line of reasoning cannot lead to a consis-
tent interpretation of p values as error rates. Another possibility would be to interpret
the observed p value as the smallest Type I error rate at which one could reject the
null hypothesis. While true in principle, this interpretation seems quite irrelevant: one
would much rather know the largest error rate one is likely to encounter.

It is illuminating to pursue this comparison of p values and frequentist error rates
a little further.[84] Imagine a large ensemble of hypothesis tests with a known fraction
of true null hypotheses, and consider an arbitrary p value p0, small enough to lead to
rejection of the tested hypotheses. What is then the error rate for p values in a small
neighborhood of p0? To fix ideas it will be useful to study a concrete example.

Suppose that we are working with an electron beam that is contaminated by pions.
We wish to test each particle in the beam to determine whether or not it is an electron.
The apparatus we use for this purpose produces a measurement X with the following
distribution:

X ∼ N (x;µe, σe) if particle is an electron,

∼ N (x;µπ, σπ) if particle is a pion,

where N (x;µ, σ) is a Gaussian distribution in x, with mean µ and width σ, and we
assume that µπ > µe. We reject the null hypothesis:

H0 : particle is an electron,

whenever the observed value of X is larger than or equal to a critical value xc. In terms
of the p value

p ≡
∫ +∞

x

N (y;µe, σe) dy, (3.2.1)

we reject H0 if p ≤ α, where α and xc are related by:

α =

∫ +∞

xc

N (y;µe, σe) dy =
1

2

[
1 + erf

(
µe − xc√

2σe

)]
.

With these definitions our electron selection cut has an efficiency of 1 − α. Consider
now all the particles for which we measure a p value between po−δ and po, where δ is a
small number and po ≤ α. As we reject H0 for all these particles, we would like to know
the fraction of true electrons among them, i.e. the Type I error rate corresponding to
po. Let xo and xo + η be the values of X corresponding to po and po − δ respectively,
by applying equation (3.2.1). Letting Ne (Nπ) be the total number of electrons (pions)
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in the beam, the fraction of electrons with a p value between po − δ and po is then:

εI(po) =

∫ xo+η

xo

dy NeN (y;µe, σe)∫ xo+η

xo

dy NeN (y;µe, σe) +

∫ xo+η

xo

dy Nπ N (y;µπ, σπ)

,

≈ NeN (xo;µe, σe)

NeN (xo;µe, σe) + Nπ N (xo;µπ, σπ)
,

=

[
1 +

Nπ

Ne

N (xo;µπ, σπ)

N (xo;µe, σe)

]−1

.

Next, replacing N (xo;µπ, σπ) by its maximum, we obtain a lower bound on the Type
I error rate corresponding to po:

εI(po) ≥
[
1 +

Nπ

Ne

1√
2π σπ N (xo;µe, σe)

]−1

.

Or, mapping xo into po with the help of equation (3.2.1):

εI(po) ≥
[
1 +

Nπ

Ne

σe

σπ

e

[
erf−1(2po − 1)

]2 ]−1

. (3.2.2)

Table 2 shows some numerical examples of this lower bound for the case Ne = Nπ,
σe = σπ. The lower bound is always significantly larger than the p value, again showing

po Lower bound on εI(po) Ratio

0.05 0.21 4.1
0.01 0.063 6.3

0.0027 0.020 7.6
5.7× 10−7 7.2× 10−6 12.7

Table 2: Calculation of the lower bound on the Type I error rate given by equation
(3.2.2), for a few p values. The last column gives the ratio of the lower bound on the
error rate to the p value.

that p values cannot be relied upon to estimate frequentist error rates. In some sense
our testbeam example trivializes this problem. A more educational exercise would
consist in looking back over the history of high-energy physics, and making a list of all
the hypothesis tests ever made and for which the truth eventually became known.[12]
Suppose that half of the tested hypotheses were in fact wrong. Table 2 then shows
that the fraction of hypotheses that were incorrectly rejected with a p value around
5.7× 10−7 is more than 10 times higher than that p value.
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To summarize, frequentist error rates are never conditioned on the actual observa-
tion, but must be specified before doing the measurement: they are simply predictions
on the performance of a procedure. In this context, the only purpose of calculating a
p value is to determine what action to take, i.e. accept or reject the null hypothesis.

3.3 Dependence of p values on sample size

The behavior of test procedures as a function of sample size occasionally becomes rele-
vant in high energy physics, although the associated issues are rarely acknowledged. For
example, one might want to compare or combine significances obtained from samples
with different sizes, or update a search for new physics at regular intervals of integrated
luminosity. Sample size affects such procedures in various ways. On a purely mathe-
matical level, the law of the iterated logarithm implies that significance levels need to
be adjusted for the way an experiment is conducted. Another aspect relates to the way
p values behave as a function of sample size when compared with other measures of
evidence, such as Bayesian posterior probabilities. Thirdly, in order to be admissible,
a strictly frequentist approach to testing constrains the dependence of error rates on
sample size. Finally, there is also an issue of “practical” versus statistical significance.

3.3.1 Stopping rules

A typical search strategy in high energy physics is to analyze the collected data at
regular intervals to see if new physics effects are emerging as the fluctuations of known
physics backgrounds stabilize with increasing sample size. An important consideration
in this context is that the test statistics used in the search perform a random walk
as the data accumulates. It is therefore entirely possible that an interesting effect
observed in a sample of given size disappears with more data. This has implications
for the choice of test levels. Consider for example the following search procedure:

1. Select n1 signal-like events from a sample of given integrated luminosity L, cal-
culate the expected background b and the corresponding p value p1 ≡ p(b, n).

2. If p1 ≤ α, reject the “background-only” null hypothesis and stop taking data.

3. If p1 > α, collect another sample of integrated luminosity L, extract the number
n2 of signal-like events in the new sample, and update the p value, p2 ≡ p(2b, n1+
n2).

4. Stop taking data and reject the null hypothesis if p2 ≤ α.

It is clear that the overall Type I error rate of this procedure is larger than α:

IPr(p1 ≤ α or p2 ≤ α) ≥ α.

In a general procedure with one or more intermediate testing points, maintaining a
given overall Type I error rate requires that one adjust the intermediate test levels as
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a function of the overall level, as well as of the number and spacing of the intermediate
tests.

The above remarks imply that the calibration of p values depends on the testing
strategy. This dependence also manifests itself with respect to how an experiment is
terminated. The classical example of this is an experiment that detects two types of
events, for example two decay modes of an unstable particle, and is designed to test
a particular value for the branching fraction of one of the modes.[37] The probability
mass function (pmf) of the observations is binomial if the experimenter decides to stop
after observing a given total number of decays, but is negative binomial if the stopping
rule is to wait until a given number of decays of a specific mode have been collected.
The p value will of course depend on the form of the pmf.

This discussion of testing strategies raises a new question. Suppose we keep on
taking data and regularly test the null hypothesis. As the sample size increases, is
there any guarantee that the probability for making the correct decision regarding H0

goes to 1? Interestingly, the answer is no, if the test level is kept constant. This is a
direct consequence of the law of the iterated logarithm (LIL). The latter applies to any
sequence of random variables Xi that are independent and identically distributed with
finite mean µ and variance σ2 6= 0. Consider the partial sums Sn ≡

∑n
i=1Xi. The LIL

then states that with probability one the inequality

|Sn − nµ| ≥ σ(1 + δ)
√

2n ln lnn

will hold for only finitely many values of n when δ > 0 and for infinitely many values of
n when δ < 0. Therefore, the curve of

√
2n ln lnn versus n defines a kind of “boundary

of boundaries” (BoB) for partial sum fluctuations. As the sample size increases, a
boundary curve just below the BoB will be crossed infinitely often by these fluctuations,
whereas a boundary curve just above the BoB will only be crossed finitely many times.
To see the relevance of this for p values, suppose the Xi are all Gaussian with known
σ and we wish to test H0 : µ = µ0 versus H1 : µ 6= µ0. An optimal test statistic for
this test is:

Zn ≡ Sn/n − µ0

σ/
√
n

,

and the corresponding p value is:

pn = 2

∫ ∞

|Zn|
dt
e−t2/2

√
2π

= 1 − erf

(
|Zn|√

2

)
.

Thus, testing pn against a fixed level, say pn ≤ α, is equivalent to testing for |Zn| ≥ c
for some fixed c. According to the LIL however, the event

|Zn| ≥ (1 + δ)
√

2 ln lnn (3.3.1)

happens infinitely many times if δ < 0. Therefore, regardless of the choice of threshold
c, |Zn| will eventually exceed it for some n, even if the null hypothesis is true. This
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phenomenon is usually referred to as “sampling to a foregone conclusion.” The only
way to avoid it is to make c a function of n, that increases at a faster rate than the
boundary specified by equation (3.3.1). Equivalently, one could keep decreasing the
test level α as a function of n, or correspondingly rescale the p value. This latter option
has the advantage of being independent of the choice of α. Reference [51] proposes to
standardize p values according to the following rule:

pstan = min

{
1

2
, p

√
N

nstan

}
, (3.3.2)

where N is the number of observations used in calculating p and nstan is a standard
sample size appropriate for the analysis of interest. This rescaling of p values by

√
N

is actually more than sufficient to cancel the effect of the LIL. It has the additional
advantages of being simple to apply and of bringing p values into closer relationship
with other measures of evidence (see below).

As shown in ref. [30], the LIL allows many types of refinement of the above rescaling
rule. For example, for two-sided tests it is possible to construct n-dependent intermedi-
ate test levels such that the overall Type I error probability is controlled, and without
having to fix the total sample size in advance. For one-sided tests it is possible to
construct a procedure that will end in a finite amount of time with the acceptance of
one or the other hypothesis with arbitrarily small error probability.

3.3.2 Effect of sample size on the evidence provided by p values

Suppose two experiments observe an interesting effect for which both obtain the same
p value, even though the sample size of the second experiment is 100 times larger than
that of the first one. An interesting question is whether or not these two experiments
provide the same evidence for the effect, as the p values indicate, regardless of sample
size.

To illustrate the issues, let the quantity of interest be the mean µ of a Gaussian
distribution with known width σ. The experiment consists in taking n measurements
X1, . . . , Xn of µ and to test H0 : µ = µ0 versus H1 : µ 6= µ0. The likelihood ratio test
rejects H0 for large values of

Z ≡ |X̄ − µ0|
σ/
√
n
, where X̄ =

1

n

n∑
i=1

Xi. (3.3.3)

The p value corresponding to observing Z = z0 ≡
√
n |x̄0 − µ0|/σ is:

p = 2

∫ +∞

z0

dz
e−z2/2

√
2π

= 1 − erf
(
z0/
√

2
)
. (3.3.4)

Suppose now that, having chosen a small α prior to the experiment, we find p ≤ α and
therefore reject H0. It is then interesting to set bounds on the true value of µ. If for
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example the mean x̄0 of all n measurements is larger than µ0, one could calculate a β
confidence level lower limit µ` on µ:

µ` = x̄0 −
√

2

n
σ erf−1(2β − 1) = µ0 +

√
2

n
σ
[
erf−1(1− p)− erf−1(2β − 1)

]
,

where the second expression on the right was obtained by using equations (3.3.3) and
(3.3.4) to express x̄0 in terms of the p value. This result shows that for a fixed value
of p, the lower limit depends on the sample size n.

For a numerical example we take µ0 = 0, σ = 1, and assume that a first experiment
makes 100 measurements and finds x̄0 = 0.26, whereas a second experiment makes
10000 measurements and finds x̄0 = 0.026. Both experiments obtain a p value of
0.9% and reject H0 at the α = 1% level. Having established that the observations
are unlikely under the null hypothesis, we may wish to know for what other values of
µ this is the case. Or to put it another way, if we were to relax the cutoff α, how
much additional parameter space would we be excluding, and how does this depend
on sample size? One way to answer this question for this particular problem is to
calculate a 90% confidence level lower limit on the true value of µ. This lower limit is
0.133 (0.013) for the first (second) experiment. By construction, it can be interpreted
as an upper limit on the set of µ values for which the observation is unlikely: even if the
true value of µ were as high as 0.133, replications of the first experiment would yield X̄
greater than its observed value at most 10% of the time. Given that the corresponding
limit for the second experiment is only 0.013, the evidence against µ = 0 is stronger in
the first experiment than in the second.

Two lessons can be drawn from this example. The first one is that, given identical
p values, the evidence coming from a small sample should be considered stronger than
that coming from a large sample. The second one is that p values by themselves do not
provide a complete picture of the evidence contained in a data sample, and confidence
intervals or limits can provide additional useful information.

3.3.3 The Jeffreys-Lindley paradox

Section 3.1 compared p values with Bayesian measures of evidence. Here we revisit
this comparison in terms of the dependence on sample size.[51] Suppose we make n
measurements of a quantity X whose distribution is Gaussian with unknown mean µ
and known width σ. We wish to test H0 : µ = 0 versus H1 : µ 6= 0. The p value
approach to this problem starts from the test statistic:

Z ≡ |X̄|
σ/
√
n
. (3.3.5)

For an observed value z0 of Z, the p value is then:

p = 2

∫ +∞

z0

dz
e−z2/2

√
2π

= 1 − erf

(
z0√
2

)
. (3.3.6)
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The Bayesian approach is based on the Bayes factor, which is defined as the factor
B01 by which the prior odds in favor of H0 must be multiplied in order to obtain the
posterior odds in favor of H0. This factor therefore represents the evidence provided
by the data. A simple application of Bayes’ theorem shows that:

B01 =
p(x |H0)

p(x |H1)
.

If the hypotheses are simple, this reduces to the likelihood ratio. In our example
however there is one parameter, µ, so that p(x |Hi) (i = 0, 1) is not a likelihood but
the marginal, or predictive probability density of the data:

p(x |Hi) =

∫
dµ p(x, µ |Hi) =

∫
dµ p(x |µ,Hi) π(µ |Hi),

where p(x |µ,Hi) is the likelihood under Hi and π(µ |Hi) is the prior for µ under Hi.
Letting δ(µ) be a point-mass probability at µ = 0 and ϕ(µ) a broad distribution, for
example a normal with mean 0 and large width τ , we set:

π(µ |H0) = δ(µ)

π(µ |H1) = ϕ(µ).

The likelihood under H1 is:

p(~x |µ,H1) =
n∏

i=1

e−
1
2

(
xi−µ

σ

)2

√
2π σ

=
e
−1

2
v2+(µ−x̄)2

(σ/
√

n)2

(
√

2π σ)n
,

with x̄ ≡
∑n

i=1 xi/n and v2 ≡
∑n

i=1(xi − x̄)2/n. The likelihood under H0 can be
obtained by setting µ = 0 in the above. The predictive densities are then:

p(~x |H0) =
e
−1

2
v2

σ2/n

(
√

2π σ)n
e−z2

0/2

∫
dµ δ(µ) =

e
−1

2
v2

σ2/n

(
√

2π σ)n
e−z2

0/2,

p(~x |H1) =
e
−1

2
v2

σ2/n

(
√

2π σ)n

√
2π σ√
n

∫
dµ

e
−1

2

(
µ−x̄
σ/
√

n

)2

√
2π σ/

√
n
ϕ(µ) ≈ e

−1
2

v2

σ2/n

(
√

2π σ)n

√
2π σ√
n

ϕ(0),

where the approximation if valid for large n, in which case the integral is approximately
equal to ϕ(x̄), and for τ large enough this is further approximated by ϕ(0). The Bayes
factor is the ratio of the above expressions:

B01 =

√
n

ϕ(0)

e−z2
0/2

√
2π σ

.

Consider a situation where the p value of equation (3.3.6) remains fixed as n increases.
The value of z0 then also remains fixed, so that the Bayes factor in favor of H0 increases
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as
√
n. This is the Jeffreys-Lindley paradox: at large n, a large value of z0 will cause

the user of p values to reject H0, whereas the Bayesian will not. According to equation
(3.3.5), for z0 to remain constant the mean x̄ must decrease as 1/

√
n; the Bayesian

analysis sees this decrease as evidence in favor of H0. A simple way to resolve the
paradox is to rescale p values by

√
n, as in equation (3.3.2).

3.3.4 Admissibility constraints

A common frequentist approach to hypothesis testing is to fix the probability α of
incorrectly rejecting the null hypothesis, and then to find a test procedure that min-
imizes the probability β of incorrectly rejecting the alternative hypothesis. It can be
shown however, that keeping α fixed regardless of the sample size n is inadmissible, in
the technical sense that it leads one to prefer a test with (α, β) error rates that are not
the smallest achievable.[17] The way this comes about is as follows. Let Tn(α) be the
α-significance level test one would apply to a sample of size n, and suppose that the
actual sample size is a random number.3 For simplicity, assume that we are dealing
with only two unequal sample sizes, n1 and n2, and that they each have the same
probability of occurring. A preference for using the same α in both Tn1(α) and Tn2(α)
implies a preference for the randomized test T ≡ 0.5Tn1(α) + 0.5Tn2(α) over any test
of the form T ′ ≡ 0.5Tn1(α1) + 0.5Tn2(α2), with α1 6= α2. Now, it turns out that α1

and α2 can be chosen in such a way that the overall type I and type II error rates of
T ′ are not larger than the corresponding error rates of T , and at least one error rate
is strictly smaller. The test T , based on a fixed α, is therefore inadmissible. A very
general theorem then shows that in order to be admissible, the choice of α must be
such that dβn(αn)/dαn is constant as a function of n. This result can also be derived
from an expected loss argument. For simple versus simple testing, the implication from
the theorem is that αn should decrease exponentially fast as a function of sample size
n; for composite alternatives the decrease is much slower, going as 1/

√
n. A decrease

in α can of course always be converted into a corresponding increase in the p value of
the test.

3.3.5 Practical versus statistical significance

In most testing problems in high energy physics, the null hypothesis is not exactly true,
due to various small uncertainties and biases that are difficult to take into account
properly. One has to decide whether or not to spend extra time and effort to quantify
and parametrize these effects so that they can be included in the model used to describe
the data. For small to moderate sample sizes, this may indeed not be necessary.
However, as the sample size increases, the test will become more and more sensitive to
the inexactness of H0, resulting in smaller and smaller p values. Eventually the null
hypothesis will be rejected even if the underlying physics it is meant to represent is

3Random sample sizes are a common occurrence in high energy physics, so this is not a vacuous
supposition.
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true. Ref. [71] proposes a method for taking small but irrelevant discrepancies into
account when performing χ2 goodness-of-fit tests on large samples.

3.4 Incoherence of p values as measures of support

The usual application of p values is as measures of surprise, a small p value being an
indication that the data does not support the null hypothesis. However, it is sometimes
tempting to suggest the obverse interpretation: if a p value is large, can it be viewed
as a measure of support for the null hypothesis? To fix ideas, consider the simple
problem of testing the mean µ of a normal density by using the average x̄ of several
measurements. For p values to be useful as measures of support, they need to possess
some elementary properties:

1. The farther the data is from the hypothesis to be tested, the smaller the p value
should be.

2. The farther the hypothesis is from the observed data, the smaller the p value
should be.

3. If H implies H ′, then anything that supports H should a fortiori support H ′;
this is the property of coherence.

It is easy to see that p values satisfy the first two of these requirements. However, they
do not always satisfy the third. Compare for example the following two test situations:

H1 : µ = µ0 versus A1 : µ 6= µ0

H2 : µ ≤ µ0 versus A2 : µ > µ0

Suppose that we observe x̄ > µ0, but with relatively large p values under both H1

and H2. Since H1 implies H2, the property of coherence requires that, as a measure
of support, the p value under H1 be smaller than the p value under H2: p1 ≤ p2.
This is not the case however, since for one-sided versus point-null hypotheses one has
p2 = p1/2 < p1. Reference [82] has generalized this argument to testing situations of
the form:

H3 : µ ∈ [a, b] versus A3 : µ 6∈ [a, b], (3.4.1)

and with distributions other than the normal, in particular the exponential, the bino-
mial, and the uniform. There are incoherences in all cases.

Note that p values for one-sided tests are generally coherent with each other. How-
ever, one-sided tests are just a particular case of the more general “interval” tests
defined above, and for which the p values are not coherent.

3.4.1 The problem of regions paradox

An interesting illustration of the incoherence of p values as measures of support comes
up in the so-called problem of regions.[42] This refers to a class of problems where one
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tries to determine which one of a discrete set of possibilities applies to a continuous
parameter vector. Examples familiar in high energy physics include the determination
of the degree of the polynomial used to model a background spectrum in the search
for a resonance, the estimation of the number of modes in a spectrum, and also some
simultaneous significance tests.

Consider a generic problem where we are trying to determine which one of two re-
gions a particular k-dimensional parameter ~µ belongs to. The two regions are separated
by a spherical boundary of known radius θ1:

R1 = {~µ : ‖~µ‖ ≤ θ1}, R2 = {~µ : ‖~µ‖ > θ1}.

Data vectors ~X are assumed to follow a multivariate normal distribution with mean ~µ
and unit covariance matrix. Suppose now that the observed data vector ~x0 falls into
region R2. With what confidence can we then assert that ~µ ∈ R2? A possible answer
to this question is based on the distance Z between the data ~X and the nearest ~µ not in
R2. It is easy to verify that for this problem Z2 equals Wilks’ likelihood ratio statistic
for testing the null hypothesis H0 that µ lies in Rc

2, the complement of R2:

Z2 = −2 ln

[
sup~µ∈Rc

2
G( ~X; ~µ,1)

sup~µ∈R2
G( ~X; ~µ,1)

]
,

whereG( ~X; ~µ, V ) is a multivariate Gaussian density with mean ~µ and covariance matrix
V .4 We quantify our confidence that ~µ lies in R2 by calculating one minus the p value
against H0:

q ≡ 1 − p = inf
~µ∈Rc

2

IPr(Z ≤ z0) = inf
~µ∈Rc

2

IPr(‖ ~X‖ − θ1 ≤ z0)

= inf
~µ∈Rc

2

IPr(‖ ~X‖2 ≤ (θ1 + z0)
2),

where z0 is the observed value of Z. The statistic ‖ ~X‖2 has a noncentral chisquared
distribution with k degrees of freedom; the above probability reaches its infimum when
~µ is on the boundary between R1 and R2, i.e. when the non-centrality parameter of
the ‖ ~X‖2 distribution equals θ2

1. If we take for example k = 4, θ1 = 5, and ‖~x0‖ = 7,
then we find q = 0.9596.

Suppose next that we add a new region R3 to this problem, separated from R2

by another spherical boundary with radius θ2 > θ1. Thus, R2 is reduced to the band
between R1 and R3:

R1 = {~µ : ‖~µ‖ ≤ θ1}, R2 = {~µ : θ1 < ‖~µ‖ < θ2}, R3 = {~µ : ‖~µ‖ ≥ θ2}.
4The supremum of a function f over a set S is the smallest upper bound on f(x) for x ∈ S; it is

denoted by supS f(x). If the supremum is actually reached by f , it is called the maximum. One can
similarly define the infimum and minimum of a function.
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Assuming that the observed data ~x0 is still in R2, how does the new region affect our
confidence that ~µ ∈ R2? We can again try to answer this question with the help of the
statistic Z defined above. We now have Z = min{‖ ~X‖ − θ1, θ2 − ‖ ~X‖}, so that:

q = inf
~µ∈Rc

2

IPr(Z ≤ z0),

= inf
~µ∈Rc

2

IPr
(
‖ ~X‖ − θ1 ≤ z0 or θ2 − ‖ ~X‖ ≤ z0

)
,

= 1 − sup
~µ∈Rc

2

IPr
(
‖ ~X‖ − θ1 > z0 and θ2 − ‖ ~X‖ > z0

)
,

= 1 − sup
~µ∈Rc

2

IPr
(
(θ1 + z0)

2 < ‖ ~X‖2 < (θ2 − z0)
2
)
.

The ‖ ~X‖2 distribution is again noncentral chisquared with k degrees of freedom, and the
probability reaches its supremum when the non-centrality parameter equals θ2

1. Using
the same numerical example as previously, and adding a boundary at θ2 = 9.5, we now
find q = 0.9717. In other words, decreasing the size of the region R2 has increased our
confidence that µ ∈ R2. As shown in reference [42], this kind of paradoxical behavior
does not occur with Bayesian methods of assessing confidence.

3.4.2 Rao’s paradox

Suppose we have one observation ~x = (2.06, 2.06) from a bivariate normal distribution
with unknown mean ~µ = (µ1, µ2), unit standard deviations (σ1 = σ2 = 1), and a
correlation coefficient ρ = 0.5. The problem is to test whether the data are consistent
with H0 : ~µ = (0, 0) at the 5% level. This is usually solved with Hotelling’s T 2 test.
If Σ denotes the covariance matrix of the data, we find t2 ≡ ~x ′Σ−1~x = 5.658, which is
smaller than 5.991, the 0.95 quantile of a χ2

2 distribution. The null hypothesis is there-
fore accepted. On the other hand, if we were to test each component of µ separately,
we would find that the null hypothesis is rejected, since x2

1 = x2
2 = 2.062 = 4.244, which

is larger than 3.841, the 0.95 quantile of a χ2
1 distribution. This incoherence is known

as Rao’s paradox.[15]

3.5 Calibration of p values

Although p values were introduced as a way to calibrate the evidence provided by the
observed value of a test statistic against a given null hypothesis, it is clear from the
previous sections that this calibration is far from perfect. Indeed, it disagrees with
Bayesian posterior probabilities as well as with frequentist error rates, depends on the
stopping rule, and fails to take sample size into account. A correction for the last two
inadequacies was proposed in reference [51] and described in section 3.3.1:

pstan = min

{
1

2
, p

√
N

nstan

}
, (3.5.1)
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where N is the actual sample size and nstan a standard sample size appropriate for the
problem at hand.

Reference [84] proposes a different calibration, whose aim is to partially reconcile p
values with Bayesian and frequentist measures. The method is to compute

B(p) = −e p ln(p), (3.5.2)

and interpret the result as a lower bound on the odds (or Bayes factor) of H0 to H1.
If a type-I frequentist error probability is preferred, the calibration is:

α(p) =
1

1 + 1
−e p ln(p)

. (3.5.3)

This expression can also be interpreted as the posterior probability of H0 that would
result from using the Bayes factor in (3.5.2) together with the assumption of equal prior
probabilities for H0 and H1. A couple of examples familiar in high energy physics will
help illustrate this calibration: for a 3σ effect the p value is 0.0027, yielding B = 0.0434
(odds of 1 to ∼ 23), and α = 0.0416; for a 5σ effect the p value is 5.7 × 10−7, giving
α ≈ B = 2.228× 10−5 (odds of 1 to ∼ 45000).

The calibrations (3.5.2) and (3.5.3) assume that the p value is uniform under the null
hypothesisH0 and that the latter is of the point-null type. The general recommendation
of [84] is that these calibrations should only be used in the absence of an explicit
alternative hypothesis. Objective Bayesian or conditional frequentist procedures should
be applied whenever the alternative is specified.

3.6 P values and interval estimates

We already argued in section 3.3.2 that the evidence provided by p values may need
to be complemented by an interval estimate of the quantity of interest. Aside from
helping to assess evidence, intervals yield useful information regardless of whether or
not a discovery is claimed. If no such claim is made, a carefully chosen lower or upper
limit constitutes a useful post-data measure of the sensitivity of the measurement. On
the other hand, in case of discovery a two-sided interval provides a plausible range of
magnitudes for the observed effect.

Another approach is to report the full p value function.[48] For models with a
location parameter θ and a one-dimensional observable X, the p value function is
defined as the integrated probability to the left of the observed data, viewed as a
function of θ.5 If the data is in the right-hand tail of the null distribution, and this
is the tail of interest for testing the null hypothesis θ = θ0, then the standard p value
equals 1 minus the p value function evaluated at θ0. In addition to calculating p values,
one can construct confidence intervals at the 1−α level by finding the parameter values
for which the p value function equals 1 − α/2 and α/2. Because of these properties

5This definition can be generalized to models that are not exactly of the location type or include
nuisance parameters. See Reference [48] for details and further references.
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the p value function is sometimes referred to as the “significance function”, or the
“confidence distribution function.” It is analogous to the marginal posterior cumulative
distribution function of Bayesian inference. To summarize, by presenting the full p
value function, one provides a powerful way for the reader to assess both the significance
of the observation and a plausible range of magnitudes for the effect of interest, whether
a discovery is claimed or not.

We close this discussion with some caveats about the well-known correspondence
between hypothesis testing and interval estimation (see for example section 9.2.1 in
[21]). As the following example shows, it is not always wise to use confidence intervals
to reject null hypotheses that define a special value for a parameter.[11] Suppose we
are measuring an observable X with pdf:

f(x | θ) = (1 + ε) − 4ε |x − θ|, for θ − 1

2
≤ x ≤ θ +

1

2
.

For small ε, the usual 95% central confidence interval for θ is:

C(x) = [x− 0.475, x+ 0.475].

If θ = 0 is a special value and we observe x = 0.48, the likelihood ratio for testing
H0 : θ = 0 is:

f(0.48 | 0)

supθ∈C(0.48) f(0.48 | θ)
≥ 1− ε

1 + ε
,

which for small ε does not justify rejecting H0. Although this example is somewhat
contrived, the same phenomenon occurs to a lesser degree with other distributions. In
high-energy physics we often have a special parameter value to test, corresponding to
the “standard model” value. Calculating a confidence interval is not the best way to
quantify the evidence contained in the data against (or in favor of) that special value.

A second caveat is that tests derived from interval constructions tend to have the
same mixture of desirable and undesirable properties as the latter. Suppose for example
that we obtain a Gaussian measurement x, with unknown positive mean µ and known
width σ = 1. The α-level central confidence interval for µ is given by x±

√
2σ erf−1(α).

If this interval does not contain the value µ = 0, then we can actually say that µ = 0 is
excluded at the (1− α)/2 level. This is a direct consequence of the way central confi-
dence intervals are constructed, which is such that the interval boundaries themselves
are valid confidence limits. In contrast, Feldman-Cousins [46] interval boundaries do
not have this property. If we constructed an α-level Feldman-Cousins interval in the
above Gaussian example and it did not contain the value µ = 0, then we would only
be able to claim that µ = 0 is excluded at the 1 − α level. On the other hand, if we
observed a large negative value for x, then the rather plausible parameter value µ = 0
would be excluded by the central interval construction but not by the Feldman-Cousins
one.
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3.7 Alternatives to p values

The many defects of p values discussed in the previous sections have led statisticians
to search for alternative measures of surprise with better properties. Some interesting
options are listed below, in no particular order (see Ref. [6] for a partial review).

1. Bayesian significance tests [67]:

Given a parameter θ, a test of the hypothesis that θ = θ0 can be based on
the posterior distribution of θ. One first calculates a β-credibility level posterior
interval for θ. Then, if θ0 is outside that interval, one can state that the hypothesis
θ = θ0 is rejected at the α = 1− β significance level. An exact significance level
can be defined as the smallest α (largest β) for which θ = θ0 is rejected. There is
of course a lot of freedom in the choice of credibility interval. A natural possibility
is to construct a highest posterior density interval, but this depends on the form
of the null hypothesis. If we wish to test the hypothesis θ ≤ θ0 for example,
then a better approach is to calculate a lower limit θL on θ, and exclude the
hypothesis if θ0 < θL. In this case the exact significance level is simply the
posterior probability for θ ≤ θ0.

2. Likelihood ratios [79]:

The law of likelihood states that, for two hypothesesH1 andH2, the one that gives
greater probability (or probability density) to observed data xobs is the one that is
better supported. If one subscribes to that law, the strength of evidence support-
ing H1 over H2 is then given by the ratio of densities f(xobs |H1)/f(xobs |H2). An
interesting quantity is the probability of misleading evidence, i.e. the probability
that the likelihood ratio favors one hypothesis when the other is true. There is a
universal bound on this probability:

IPr

[
f(xobs |H1)

f(xobs |H2)
≥ k

∣∣∣∣H2

]
≤ 1

k
. (3.7.1)

Although this bound is achievable, it is usually not the strongest bound in large
samples. One can show that, asymptotically, the probability of misleading evi-
dence is bounded by Φ(−

√
2 ln k), where Φ is the cumulative normal distribution

with zero mean and unit width. In the presence of nuisance parameters, the
numerator and denominator of the likelihood ratio should separately be maxi-
mized over them. The resulting ratio of profile likelihoods can then be used as a
measure of evidence, and the resulting probability of misleading evidence is again
asymptotically bounded by Φ(−

√
2 ln k). It should be noted that this asymptotic

limit is not reached uniformly, i.e. for any sample size there may remain some
parameter values for which the bound is exceeded.

3. Relative likelihoods [9, section 4.7.2]:

If x0 is the observed value of a statistic X with distribution density f(x), two
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possible measures of surprise are:

m?(x0) ≡ f(x0)

supx f(x)
, (3.7.2)

m??(x0) ≡ f(x0)

E [f(X)]
. (3.7.3)

If f(x) depends on an unspecified parameter ν, one can use the prior-predictive
distribution instead of f(x) in the above definitions. The prior-predictive distri-
bution is the integral of f(x | ν)π(ν) over ν, where π(ν) is a suitable prior density
for ν. A possible disadvantage of relative likelihood measures is their lack of in-
variance under non-linear one-to-one transformations of the observation.

4. Lower bounds on Bayes factors:

Bayes factors are a popular Bayesian way for comparing two hypotheses. How-
ever, when one or both hypotheses are composite, a proper prior must be elicited
over the relevant parameter space, which is difficult to do in the absence of ob-
jective prior information. One way to overcome this problem was described in
section 3.1: it consists in minimizing the Bayes factor in support of a null hy-
pothesis over a large class of plausible prior densities. Here we summarize the
application of this technique to chisquared tests of fit.[36] Suppose we have a
binned distribution of events, {ni, i = 1, . . . , t}, that we wish to compare to
expectations {Np0

i , i = 1, . . . , t}, where N ≡
∑t

i=1 ni. The standard way to
proceed is to compute the weighted sum of squares:

SN =
t∑

i=1

(ni −Np0
i )

2

Np0
i

, (3.7.4)

and to evaluate its significance with the p value:

p = IPr
(
χ2

t−1 ≥ SN

)
, (3.7.5)

where χ2
t−1 is a chisquared variate with t− 1 degrees of freedom. Strictly speak-

ing, this p value is only an approximation to the correct, multinomial p value.
Testing the compatibility of binned data with their expectations is equivalent to
testing H0 : ~p = ~p 0 versus H1 : ~p 6= ~p 0. Writing f(~n | ~p) for the corresponding
multinomial density and g(~p) for a prior density over alternative values of ~p, the
Bayes factor is:

Bg(~n) =
f(~n | ~p 0)

mg(~n)
where mg(~n) =

∫
d~p f(~n | ~p) g(~p). (3.7.6)

An interesting class of densities g is given by the priors that are conjugate to
f(~n | ~p) and whose mean is ~p 0. These are Dirichlet densities with parameter
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vector proportional to ~p 0. Minimizing the Bayes factor over this class leads to
the following lower bound, valid for SN > t− 1 in the asymptotic limit N →∞:

B(~n) ≡ inf
g
Bg(~n) →

[
SN

t− 1

](t−1)/2

e−[SN−(t−1)]/2. (3.7.7)

For example, if we observe SN = 50 over t − 1 = 20 degrees of freedom, the
chisquared p value is 0.00022, whereas the above lower bound is 0.0029, more
than ten times larger. It is important to keep in mind that this is a lower bound
however. Whereas a large value of B(~n) indicates compatibility between data
and expectations, a small value does not necessarily indicate a problem. In the
latter case, a sharper Bayes factor can only be obtained by further specifying the
prior g(~p).

5. Observed relative surprise [44]:

The idea here is to look at how our belief in a particular value θ0 of a parameter
of interest θ changes from the prior to the posterior. Consider therefore the
posterior to prior ratio:

p(θ0 |x0)

π(θ0)
,

where x0 is, as before, the observed value of X. If the change in belief is smaller
for θ0 than for other values of θ, then the observed data x0 provide evidence
against θ = θ0. This evidence can be quantified by looking at the posterior
probability for observing a change in belief larger than the one at θ0. This is the
observed relative surprise:

ORS ≡ p

[
p(θ |x0)

π(θ)
>

p(θ0 |x0)

π(θ0)

∣∣∣∣ x0

]
. (3.7.8)

Interesting properties of the ORS are its invariance under parameter transforma-
tions and its avoidance of the Jeffreys-Lindley paradox. Also, the fact that it is a
probability gives it a relatively straightforward interpretation. Unfortunately, it
requires the elicitation of a proper prior π(θ) over alternative values of θ, and it
makes double use of the data: first to compute the posterior to prior ratio, and
then again to calculate a posterior tail probability.

6. The Bayes reference criterion [15]:

A general method for characterising the evidence against a null hypothesis of the
form θ = θ0 is to calculate the posterior expectation of a measure of discrepancy
between the pdf’s f(x | θ0) and f(x | θ), for θ 6= θ0:

d(θ0 |x0) =

∫
Θ

dθ δ
{
f(x | θ0), f(x | θ)

}
πδ(θ |x0), (3.7.9)
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where δ{f, g} measures the discrepancy between f and g, and πδ(θ |x0) is the
reference posterior density corresponding to δ [16]. A good choice for δ is the
so-called intrinsic discrepancy:

δ{f, g} ≡ min
{
κ{f | g}, κ{g | f}

}
(3.7.10)

where κ{f | g} is the Kullback-Leibler divergence between f and g:

κ{f | g} ≡
∫
dx g(x) ln

g(x)

f(x)
. (3.7.11)

With this choice of discrepancy, d(θ0 |x0) is known as the Bayes reference criterion
(BRC) and enjoys desirable properties such as invariance with respect to one-to-
one transformations of the parameter and the data, and immunity to various
paradoxes, such as Jeffreys-Lindley’s and Rao’s.

This list is by no means exhaustive, and research in this area is still ongoing, see for
example [61]. This review is about p values however, so we will have no further occasion
to comment on these methods.

4 Incorporating systematic uncertainties

Systematic uncertainties result from a lack of knowledge about auxiliary parameters
that are not of direct interest to the experimenter, but are needed in order to make
definite inferences from a measurement. These auxiliary parameters are called “nui-
sance parameters” in the statistics literature. Examples include calibration constants,
efficiencies, acceptances, integrated luminosities, but also more fundamental parame-
ters such as the top quark mass and the strong interaction coupling strength when the
latter are not the primary object of measurement.

As there are many techniques to incorporate systematic uncertainties in a p value
calculation, it is helpful to compile some criteria for judging their merit. We discuss
here some obvious ones, such as uniformity, monotonicity, generality, power, and un-
biasedness.

1. Uniformity

The use of p values to judge the compatibility between data and a model is only
meaningful if the distribution of the p value under the given model is known.[80]
The requirement that this distribution be uniform can then be viewed as a special
convention motivated by simplicity, since it facilitates to some degree interpreta-
tion and comparison across models. There is nevertheless some ambiguity in the
choice of ensemble with respect to which a p value should be uniform, especially
in problems involving nuisance parameters about which information is available
in the form of a proper Bayesian prior rather than a frequentist measurement.
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One possibility in this case is to require the p value to be uniform with respect to
an ensemble of observations drawn from a pdf in which the nuisance parameters
themselves are fluctuated according to their prior. In other words, the distri-
bution of observations is “smeared” by the nuisance prior. This requirement of
average uniformity is often achievable in practice and leads to the prior-predictive
p value described in section 4.7. Another possibility is to require the p value to
be uniform at each physically admissible point of nuisance parameter space. This
much stricter requirement of frequentist uniformity is not generally achievable.
However, as the size n of the data sample increases, it will usually be the case
that the data will dominate any prior information; as a result, some p value
constructions do become frequentist-uniform in the asymptotic limit, n → ∞.
Whether one adopts (asymptotic) frequentist uniformity or average uniformity
as criterion for a valid p value depends on whether one is interested in testing
only the pdf of the data, or rather the combination of pdf plus priors.

2. Monotonicity

By definition, systematic uncertainties are introduced into a model to represent
lack of knowledge about some aspect of the hypothesis being tested. Therefore, if
a test leads us to reject the null hypothesis, we would like systematic uncertainties
to diminish our confidence in the validity of this rejection, by increasing the
reported p value when it is small. On the other hand, if we are led to accept the
null hypothesis, the same argument would require that systematics decrease the
p value when it is large. It is difficult to satisfy both requirements simultaneously
without running into trouble near the boundary between “small” and “large” p
values, so that a choice must be made. This is a good place to recall our discussion
of the incoherence of p values as measures of support (section 3.4). Significance
tests are asymmetric, in that their primary purpose is to reject the null hypothesis
H0 if it is false. If one fails to reject, this is reported as a “failure to reject H0”
rather than “acceptance of H0.” Accordingly, we require that for a fixed value
of the observation, the p value increase with the systematic uncertainties. Note
the qualification “for a fixed value of the observation”; the monotonicity criterion
is a pointwise property, not an ensemble property like uniformity. There is one
place where one might tolerate minor violations of this criterion, namely when
they are caused by the discreteness of the chosen test statistic. We will see an
example of this in section 4.4.1.

3. Generality

Some methods for incorporating systematic uncertainties depend critically on
the structure of the problem. For example, the conditioning method described in
section 4.2 requires the existence of a special kind of conditioning statistic. Thus,
a fair comparison between models is only possible if they all have this structure,
a rather undesirable restriction. We therefore favor methods that are applicable
to as wide a range of problems as possible.
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4. Power

P values are generally not constructed with a specific alternative hypothesis in
mind, so that power is not a primary concern. Nevertheless, systematic uncer-
tainties do tend to reduce the ability of a p value to detect deviations from the
null hypothesis, and the magnitude of this reduction may depend on the method
used to eliminate nuisance parameters. All other things being equal, it may be
useful to compare methods by checking the power of the corresponding p values
against some classes of physically relevant alternatives.

5. Unbiasedness

For a test about a population parameter µ, the p value is unbiased if its power
function, IPr(p ≤ α |µ), is larger for any µ under the alternative hypothesis than
for any µ under the null hypothesis. While the requirement of unbiasedness may
be appropriate in some situations, this should not be a general rule. Consider for
example a test of the form H0 : µ = µ0 versus H1 : µ 6= µ0. It may be that values
of µ smaller than µ0 are considered more likely than values larger than µ0, or it
may be that the consequences of incorrectly accepting µ values larger than µ0

are more serious. In both cases one would be cautious about accepting a µ value
greater than µ0. This could be accomodated by deliberately introducing bias in
the test.

Conceptually, the simplest method for incorporating a systematic uncertainty in a p
value calculation is to maximize the p value with respect to the corresponding nuisance
parameter ν. This is the so-called supremum method:

psup = sup
ν
p(ν). (4.0.12)

Even though supremum p values are not tail probabilities, they enjoy some useful
properties. As is easy to verify, if p(ν) is exact or conservative for fixed ν, then psup

is conservative. Furthermore, the supremum method clearly satisfies the monotonicity
criterion. This is an appropriate method for situations where, after having incorporated
all available information about the nuisance parameter in the p value, the latter still
retains some residual dependence on that parameter. Unfortunately, it is not always
simple to implement (calculating a supremum can be arduous if there are many local
maxima), and it sometimes yields useless results such as psup = 1. We will describe
examples of this technique in sections 4.3 and 4.4.

4.1 Setup for the frequentist assessment of Bayesian p values

To illustrate methods for handling systematics, we will consider the common example
of a Poisson observation with a Gaussian uncertainty on the mean. In the absence of
systematics, the p value is given by:

p0(n) =
+∞∑
i=n

νi

i!
e−ν , (4.1.1)
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where n and ν are the observed and expected numbers of events, respectively. If ν
is unknown or uncertain, substituting equation (4.1.1) into (4.0.12) yields the useless
result psup = 1, which can only be avoided by using independently obtained information
about ν. There are basically two approaches to the modeling of such information.
The first one is frequentist and applicable whenever ν is measured in an auxiliary
experiment with some likelihood function Laux.(ν). The second one is Bayesian and
more generally applicable, as it only requires that one specify a prior distribution
π(ν). In order to perform a meaningful comparison between frequentist and Bayesian
methods for handling systematic uncertainties, it will prove convenient to endow the
Bayesian formulation of case studies with a hierarchical prior structure:

Consistency condition for assessing the frequentist properties of a Bayesian
method: for any Bayesian method we shall require that any subjective or
informative prior π(ν) be obtainable via Bayes’ theorem as a posterior dis-
tribution from an auxiliary measurement likelihood Laux.(ν) and a suitably
noninformative hyperprior πaux.(ν).

To fix ideas, assume that the auxiliary measurement has a Gaussian likelihood:

Laux.(ν) =
e−

1
2(

ν−x0
∆ν )

2

√
2π∆ν

. (4.1.2)

Although the true value of ν must be positive since it represents a physical event rate
in equation (4.1.1), the measured value x0 will be allowed to take on negative values
due to resolution effects in the auxiliary measurement. A natural noninformative prior
for the location parameter ν in the auxiliary measurement is the square step function:

πaux.(ν) = ϑ(ν) ≡
{

0 if ν ≤ 0,
1 if ν > 0.

(4.1.3)

Applying Bayes’ theorem to the likelihood (4.1.2) and prior (4.1.3), we obtain the
posterior density

πaux.(ν |x0) =
e−

1
2(

ν−x0
∆ν )

2

ϑ(ν)
√

2π∆ν 1
2

[
1 + erf

(
x0√
2∆ν

)] ≡ π(ν). (4.1.4)

Our intent is to use this π(ν) as a prior in any Bayesian method that is to be compared
to a frequentist method with an auxiliary measurement described by the likelihood
(4.1.2). When studying a Bayesian p value, this consistency requirement will allow us
to check the uniformity of the p value with respect to fluctuations in both n0 and x0,
while keeping ν fixed, as would be done for a purely frequentist method. In other words,
frequentist and Bayesian methods can be compared relative to the same ensemble by
computing the cumulative distribution:

IPr
[
p(N,X) ≤ α

∣∣∣H0

]
=

∑
n

∫
dx

p(n,x)≤α

νn e−ν

n!

e
−1

2

“
x−ν
∆ν

”2

√
2π∆ν

, (4.1.5)
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where p(n, x) is the p value of interest, and we use the capital letters N,X to refer
to the random variables corresponding to n, x. If the p value is uniform, the above
probability equals α. Intuition suggests that for fixed n, p(n, x) should increase with
x. When this is true, a function x̃n(α) can be defined implicitly by the equation

p(n, x̃n(α)) = α, (4.1.6)

so that p(n, x) ≤ α is equivalent to x ≤ x̃n(α). The integral over x in equation (4.1.5)
can then be performed, yielding:

IPr
[
p(N,X) ≤ α

∣∣∣H0

]
=

∞∑
n=0

1

2

[
1 + erf

(
x̃n(α)− ν√

2 ∆ν

)]
νn e−ν

n!
. (4.1.7)

By writing the Poisson term νne−ν/n! as the difference p0(n)− p0(n+ 1) between two
p values of the form (4.1.1), the cumulative probability of p(n, x) can be reexpressed
as a weighted sum of these p values:

IPr
[
p(N,X) ≤ α

∣∣∣H0

]
=

∞∑
n=0

wn p0(n) (4.1.8)

where:

wn =
1

2

[
1 + erf

(
x̃0(α)− ν√

2 ∆ν

)]
if n = 0;

=
1

2

[
erf

(
x̃n(α)− ν√

2 ∆ν

)
− erf

(
x̃n−1(α)− ν√

2 ∆ν

)]
otherwise.

As the wn weights sum to one, and the p0(n) go to zero with increasing n, this form of
the cumulative distribution is particularly suitable for numerical computation.

Although our consistency requirement is useful for comparison purposes, we empha-
size that it is an unnecessary restriction in practical applications, where the primary
consideration of a Bayesian analysis should be to elicit an appropriate distribution to
model one’s actual knowledge and assumptions about ν. The popularity of the Gaus-
sian model often eclipses the importance of studying alternative, perhaps more realistic
models with heavier tails, such as the lognormal distribution. It is always a good strat-
egy to test the robustness of one’s results to distributional assumptions about the prior,
as will be exemplified in section 4.7.2.

The choice of method for incorporating systematics in p will depend on one’s in-
terpretation of the available information about ν. In the following subsections we
discuss seven basic techniques: conditioning, supremum, confidence interval, bootstrap
(plug-in and adjusted plug-in), fiducial, prior-predictive, and posterior-predictive. The
prior-predictive and posterior-predictive methods are particularly suitable when infor-
mation about ν is of a Bayesian kind, whereas the other methods are restricted to
problems where ν is constrained by independent frequentist measurements. Proba-
bly the most popular method in high energy physics is the prior-predictive one; the
CDF collaboration, for example, used it to calculate the significance of the top quark
discovery and of many other, less famous effects.
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4.2 Conditioning method

The conditioning method is by construction frequentist, but its applicability is some-
what limited. For a general data sample X = (X1, . . . , Xn), it requires that one find a
statistic S = S(X) that is sufficient for the nuisance parameter under the null hypoth-
esis H0.[13] Then, if T is a suitable test statistic, and t and s are the observed values
of T and S respectively, the conditional tail probability IPr(T ≥ t |S = s,H0) is a valid
p value that does not depend on the nuisance parameter.

There are two difficulties with this approach. The first one is that such a sufficient
statistic S does not always exist. In fact, it does not even exist for our standard
example of a Poisson measurement with an auxiliary Gaussian calibration of the mean.
The second difficulty is that, when a suitable S does exist, the conditioning procedure
throws away any information that S might contain about the parameter of interest.
Furthermore, it is usually not at all straightforward to quantify how much information
S actually contains about the parameter of interest, and hence to what degree the
conditioning procedure is justified.[5] In order to be able to illustrate the conditioning
method with our standard Poisson problem, we need to replace the Gaussian pdf of
the auxiliary measurement by a Poisson one. We examine two possible scenarios to
relate the Poisson means in the primary and auxiliary measurements, a multiplicative
and an additive one.

For the multiplicative scenario, we suppose that the main experiment measures a
Poisson count N with mean µ ν, where µ is the parameter of interest and ν a nuisance
parameter. The latter is constrained by the auxiliary measurement of a Poisson variate
M with mean τν, where τ is a known constant:

N ∼ Poisson(µ ν),

M ∼ Poisson(τ ν).
(4.2.1)

In high energy physics one could think of µ as the production cross section for some
process of interest and ν as a product of efficiencies, acceptances, and integrated lumi-
nosity. An appropriate sufficient statistic in this situation is S ≡ M + N , which has
a Poisson distribution with mean τν + µν. The conditional probability distribution of
N given S = s is:

IPr(N = n |S = s) =
IPr(N = n, S = s)

IPr(S = s)
,

=
IPr(N = n) IPr(M = s− n)

IPr(S = s)
,

=
[(µν)n e−µν/n!] [(τν)s−n e−τν/(s− n)!]

(τν + µν)s e−τν−µν/s!
,

=

(
s

n

)(
µ

τ + µ

)n(
1− µ

τ + µ

)s−n

,
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which is a binomial distribution with parameters s and µ/(τ +µ). The dependence on
ν has been completely eliminated. If we observe N = n0, S = s0 ≡ n0 +m0, and are
interested in a specific value µ0 of µ, we can test H0 : µ = µ0 versus H1 : µ > µ0 with
the p value:

pcond(n0, s0) ≡
s0∑

n=n0

(
s0

n

)
θn
0 (1− θ0)

s0−n = Iθ0(n0, s0 − n0 + 1), (4.2.2)

where θ0 ≡ µ0/(τ + µ0) and Ix(p, q) is the incomplete beta function:

Ix(p, q) ≡ Γ(p+ q)

Γ(p) Γ(q)

∫ x

0

tp−1 (1− t)q−1 dt, (4.2.3)

which can easily be evaluated with the help of a routine from [78].
The justification for this p value calculation is that the binomial distribution func-

tion with parameters s and µ/(τ + µ) is stochastically increasing6 in µ, so that large
values of n do indeed constitute evidence in the direction of H1.

For the additive scenario, we imagine that the primary experiment measures a
Poisson count N with mean µ + ν, where µ is again the parameter of interest and ν
the nuisance parameter. The latter is constrained by the auxiliary measurement of a
Poisson count M with mean τν, τ a known constant:

N ∼ Poisson(µ + ν),

M ∼ Poisson(τ ν).
(4.2.4)

This corresponds to the usual high energy physics setup where µ is the rate of a signal
process and ν the rate of a background process. It will again prove useful to condition
on S ≡M+N . A conditional probability calculation similar to the previous one yields:

IPr(N = n |S = s) =

(
s

n

)(
1 + µ/ν

1 + τ + µ/ν

)n(
1− 1 + µ/ν

1 + τ + µ/ν

)s−n

,

again a binomial distribution. This time however, it depends on the nuisance parameter
ν, except under the null hypothesis of no signal: H0 : µ = 0. This exception is all we
need to be able to calculate a p value for this problem. It is easy to verify that the
result is identical to the p value of equation (4.2.2), provided µ0 is set to 1 in the latter
(i.e. θ0 is set to 1/(1 + τ)).

Example 1 (Flat background with known signal window)
An experiment measures the invariant mass of some selected particle tracks in each
collision event of a given data sample. The invariant mass spectrum is flat, except
in a predetermined signal window, where an excess is observed. The signal window

6A cumulative distribution function F (x | θ) is stochastically increasing in θ if θ1 > θ2 implies
F (x | θ1) ≤ F (x | θ2) for all x, and F (x | θ1) < F (x | θ2) for some x. In other words, the random
variable X tends to be larger if θ1 is the true value of θ than if θ2 is.
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is 40 MeV/c2 wide and contains 10 events, whereas the background region spans 660
MeV/c2 and contains 7 events. Using the additive scenario described above, we have
τ = 660/40 = 16.5 since the background is flat, and we condition on the total observed
number of events, s = 17. The conditional p value is 4.972× 10−9, or 5.85σ.

4.2.1 Null distribution of conditional p values

In the multiplicative scenario, the distribution of the observables N and M under the
null hypothesis is given by:

IPr(N = n,M = m |H0) =
(µ0ν)

n e−µ0ν

n!

(τν)m e−τν

m!
.

The null hypothesis distribution for the additive scenario can be obtained as a particular
case of this formula, by setting µ0 = 1. The cumulative distribution of p values under
H0 in either scenario can be decomposed as a weighted sum of conditional probabilities:

IPr(pcond(N,S) ≤ α |H0) =
+∞∑
s=0

IPr(S = s |H0) IPr(pcond(N,S) ≤ α |S = s,H0),

(4.2.5)
where pcond(n, s) is given by equation (4.2.2). The first equality in that equation shows
that, for fixed s, pcond(n, s) increases as n decreases. It follows that for given α and s
there must exist a smallest integer nc = nc(α, s) such that pcond(nc(α, s), s) ≤ α, i.e.:

pcond(n, s) ≤ α ⇔ n ≥ nc(α, s).

We therefore have:

IPr(pcond(N,S) ≤ α |S = s,H0) = IPr(N ≥ nc(α, s) |S = s,H0)

= pcond(nc(α, s), s),

where the second equality follows from the definition of pcond. Substituting this result
in equation (4.2.5) and replacing IPr(S = s) by its expression as a Poisson probability,
we finally obtain:

IPr(pcond(N,S) ≤ α |H0) =
∞∑

s=0

(µ0ν + τν)s e−µ0ν−τν

s!
pcond(nc(α, s), s). (4.2.6)

By definition of nc, pcond(nc(α, s), s) ≤ α, so that IPr(pcond(N,S) ≤ α |H0) ≤ α,
implying that conditional p values are conservative. That in this example they are
in fact everywhere strictly conservative can be understood from Figure 1. The top
three plots of that figure show the cumulative probability of pcond for fixed values of
the conditioning statistic S. In each case, there is only a discrete number of points
where pcond is an exact p value. The locations of these points shift when S is varied.
As a result, the unconditional cumulative probability IPr(pcond(N,S) ≤ α |H0), being a
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weighted sum of conditional probabilities (eq. 4.2.5), is everywhere strictly less than α.
Note that if N was a continuous statistic, then it would be possible to find nc(α, s) such
that pcond(nc(α, s), s) = α exactly. This would then yield IPr(pcond(N,S) ≤ α |H0) = α,
showing that conditional p values in a continuous sample space are exact.

Additional cumulative probability plots are shown in Figures 2 and 3. These plots
are shown on a log-log scale to emphasize the behavior of the cumulative probability
for small, i.e. interesting p values. A slightly different interpretation of these plots is as
P-P plots, i.e. probability-probability plots for comparing the cumulative probability of
p values with the cumulative probability of a uniform distribution, since the α plotted
along the x axis can be written as α = IPr(U ≤ α), provided U ∼ U [0, 1]. Thus for
exact p values we expect the solid line to coincide with the main diagonal. Finally,
these plots can also be interpreted in a Neyman-Pearson framework, as showing the
true probability of a Type I error (keeping in mind the caveats mentioned in section
2 about the notation p ≤ α). For example, cumulative probabilities below the main
diagonal indicate that the reported Type-I error α overstates the actual Type-I error.

4.3 Supremum method

The previous method requires the testing problem to have a special structure, namely
a conditioning statistic that allows to eliminate the nuisance parameter(s). It is not the
only structure that allows this: in some problems one may instead be able to identify a
similar test statistic, i.e. a statistic whose (unconditional) distribution is independent
of nuisance parameters. A classical example of this type of structure is found in tests
on the mean of a normal distribution with unknown width, where Student’s t statistic
is similar. Another example is given by the Kolmogorov-Smirnov statistic used to test
whether two random samples were drawn from populations with the same, continuous
distribution.

The existence of such structures is the exception rather than the rule, and here
we are interested in methods that are as general as possible. In particular, one may
find it necessary to construct p values that are guaranteed to be conservative if they
cannot be exact. A fail-safe procedure with this property is the so-called supremum
p value that was briefly introduced with equation (4.0.12). This is actually a very
flexible method, in that it leaves the choice of test statistic entirely up to the user. A
major consideration is of course to limit the loss of power caused by the unconditional
maximization of the p value over the nuisance parameter space. We therefore begin
with a short discussion of the merits of various choices of test statistic.

4.3.1 Choice of test statistic

For simple versus simple and one-sided hypothesis tests, the Neyman-Pearson lemma
identifies the likelihood ratio as the statistic on which uniformly most powerful tests
are based (see for example [21]). This optimality property makes the likelihood ratio
attractive in more general situations as well. For testingH0 : θ ∈ Θ0 versusH1 : θ 6∈ Θ0,
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this statistic is defined by:

λ ≡
sup L(θ |x)
θ∈Θ0

sup L(θ |x)
θ∈Θ

, (4.3.1)

where Θ is the union of Θ0 and its complement. This definition is very general in
the sense that the notation supθ∈Θ0

works in many different contexts: for example, for
a one-sided hypothesis where Θ0 = {θ : θ ≤ θ0}, it indicates that the supremum is
taken over all θ less than or equal to θ0; for a point-null hypothesis in the presence of
a nuisance parameter ν, Θ0 = {θ, ν : θ = θ0}, it signifies a supremum over all values
of ν, subject to the constraint θ = θ0; and so on. Under some standard regularity
conditions, the asymptotic distribution of the likelihood ratio under the null hypothesis
is chisquared with number of degrees of freedom equal to the difference between the
numbers of free parameters specified by θ ∈ Θ0 and θ ∈ Θ. Most of the regularity
conditions are rather technical and are usually satisfied in cases of practical interest,
but there are two important exceptions. The first one concerns problems in which the
null hypothesis is on the boundary of the maintained hypothesis, as is the case when
testing H0 : θ = θ0 versus H1 : θ > θ0. The second exception occurs when some
parameters are defined under the alternative hypothesis but not under the null, for
example when testing for the presence of a resonance peak on top of a wide background
spectrum, and the mean or width of the peak is a free parameter. In both situations the
asymptotic distribution of the likelihood ratio is not a simple chisquared and may not
even have an analytical representation. This type of problem will be further examined
in section 6.

When testing a point-null hypothesis, H0 : θ = θ0, a powerful test against small
deviations from H0 can be obtained from the score statistic:

S(θ0) ≡ ∂

∂θ
lnL(θ |x)

∣∣∣∣
θ=θ0

. (4.3.2)

To see this, consider the likelihood ratio L(θ0 + ε |x)/L(θ0 |x) for small values of ε;
taking the logarithm and expanding to first order in ε yields:

lnλ = lnL(θ0 + ε |x) − lnL(θ0 |x) ≈ ε S(θ0). (4.3.3)

Hence for small, fixed ε, S(θ0) is essentially equivalent to λ. If ε is unspecified, its
maximum likelihood estimate ε̂ satisfies S(θ0 + ε̂) = 0, so that the magnitude of S(θ0)
can be used as a measure of the agreement between the data and the null hypothesis.
A simple geometrical interpretation is that one is using the slope of the log-likelihood
curve at θ0 to determine how far θ0 is from the maximum of the curve. However,
for a given slope, the distance between θ0 and the maximum will also depend on the
curvature of the log-likelihood curve. One is therefore led to the following definition of
the test statistic for the score test:

ZS ≡ S(θ0)√
I(θ0)

, (4.3.4)
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where I(θ) is the information number:

I(θ) ≡ −Eθ

[
∂2

∂θ2
lnL(θ |x)

]
= Eθ

[(
∂

∂θ
lnL(θ |x)

)2
]

= Varθ [S(θ)] . (4.3.5)

Note that in contrast with the likelihood ratio test, the score test only requires eval-
uation of the model under the null hypothesis, consistent with the score test being a
“local” test. When more than one observation is made, the score statistic (4.3.2) is
a sum of terms corresponding to the individual observations; it is therefore asymp-
totically normal. Furthermore, since the information number is the variance of the
score statistic, the asymptotic distribution of ZS under H0 is standard normal (again
assuming that standard regularity conditions are satisfied). If H0 is composite, θ0 can
be replaced by its restricted maximum likelihood estimate under H0. One way to im-
plement the restricted maximization is via the method of Lagrange multipliers, so that
the score test is sometimes also referred to as the Lagrange multiplier test.

Another commonly used class of tests is based on the Wald statistic:

W ≡ θ̂ − θ0√
Var(θ̂)

, (4.3.6)

where θ̂ is an unrestricted estimator of θ and Var(θ̂) is an estimate of the variance of
θ̂. If θ̂ is the maximum likelihood estimate of θ, then the information number I(θ̂)
is a good estimate of its variance. An alternative is to use the observed information
number:

Î(θ̂) ≡ −
[
∂2

∂θ2
lnL(θ |x)

]
θ=θ̂

. (4.3.7)

The null distribution of the Wald statistic is approximately standard normal. A dis-
advantage of this statistic is that it is not invariant under parameter transformations;
for example, testing θ = 1 may not give the same result as testing ln θ = 0, because
Var(θ̂) does not transform covariantly.

It is generally believed that the likelihood ratio statistic is the most robust choice
in the majority of problems of interest to high energy physicists. The score and Wald
statistics should only be considered if the likelihood ratio is for some reason intractable.

4.3.2 Application to a likelihood ratio problem

We illustrate the supremum method by applying it to the likelihood ratio statistic for
the combined Poisson×Gaussian likelihood of our standard example:

L(µ, ν |n, x) =
(µ+ ν)n

n!
e−µ−ν e

− 1
2(

x−ν
∆ν )

2

√
2π∆ν

, (4.3.8)

where µ is the unknown number of signal events, n is the total number of observed
events in the primary measurement, and x is the result of the auxiliary measurement
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on the background ν. As mentioned previously, ν is a positive parameter, but we allow
the measurement result x to be zero or negative due to resolution effects.

The likelihood ratio statistic λ is defined by:

λ(n, x) ≡

sup L(µ, ν |n, x)
µ=0

ν≥0

sup L(µ, ν |n, x)
µ≥0

ν≥0

=
L
(
0, ˆ̂ν |n, x

)
L (µ̂, ν̂ |n, x)

, (4.3.9)

where, following the convention in chapter 22 of [94], double-hatted quantities refer to
maximum likelihood estimates (MLE) under the null hypothesis (µ = 0, ν ≥ 0), and
single-hatted quantities to MLE’s under the alternative hypothesis (µ > 0, ν ≥ 0).

We start with the gradient of the log-likelihood:

∂ lnL
∂µ

=
n

µ+ ν
− 1, (4.3.10)

∂ lnL
∂ν

=
n

µ+ ν
− 1 − ν − x

∆ν2
. (4.3.11)

For the numerator of λ we need to maximize L under the null hypothesis, i.e. set µ = 0
and solve ∂ lnL/∂ν = 0 for ν. This yields

ˆ̂ν =
x−∆ν2

2
+

√(
x−∆ν2

2

)2

+ n∆ν2. (4.3.12)

For the denominator of λ the likelihood must be maximized under the alternative
hypothesis, i.e. over the whole space of positive µ and ν values. There are three
possible cases:

(µ̂ , ν̂) =


(n , 0) if x < 0,

(n− x , x) if 0 ≤ x ≤ n,

(0 , ˆ̂ν) if x > n.

(4.3.13)

Plugging ˆ̂ν, ν̂, and µ̂ into equation (4.3.9) and taking twice the negative logarithm
yields finally:

− 2 lnλ(n, x) =


2n ln(n/ˆ̂ν)− ˆ̂ν2/∆ν2 if x < 0;

2n ln(n/ˆ̂ν)− (ˆ̂ν2 − x2)/∆ν2 if 0 ≤ x ≤ n;

0 if x > n.

(4.3.14)

For the case most relevant to practical applications, namely 0 ≤ x ≤ n, the likelihood
ratio can be rewritten somewhat differently with the help of the defining equation for
ˆ̂ν:

− 2 lnλ(n, x) = 2

(
n ln

n

ˆ̂ν
+ ˆ̂ν − n

)
+

(
ˆ̂ν − x

∆ν

)2

if 0 ≤ x ≤ n. (4.3.15)
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This form will reappear as the variable y(n) in equation (4.7.27) of section 4.7.4, where
it is used to derive an approximation to the Bayes-motivated prior-predictive p value.

4.3.3 Null distribution of the likelihood ratio statistic

In order to calculate a p value from λ, we need the distribution of λ under the null
hypothesis H0, i.e. under the hypothesis that there is no signal (µ = 0) and that
the observed data can be explained as a fluctuation of background only. Since λ is a
function of n and x, its survivor function (i.e. its tail probability distribution) can be
written as:

IPr
[
−2 lnλ(N,X) ≥ c

∣∣∣µ = 0, ν ≥ 0
]

=
∑

n

∫
dx

−2 ln λ(n,x)≥c

νn e−ν

n!

e
−1

2

“
x−ν
∆ν

”2

√
2π∆ν

. (4.3.16)

Inspection of the x derivative of −2 lnλ(n, x) reveals that the latter decreases with x in
the region x < n. One can therefore implicitly define a function x̃(n, c) by the equation

− 2 lnλ(n, x̃(n, c)) = c, (4.3.17)

so that the expression for the survivor function of λ simplifies to:

IPr
[
−2 lnλ(N,X) ≥ c

∣∣∣µ = 0, ν ≥ 0
]

=
∞∑

n=1

∫ x̃(n,c)

−∞

νn e−ν

n!

e
−1

2

“
x−ν
∆ν

”2

√
2π∆ν

=
∞∑

n=1

νn e−ν

n!

1

2

[
1 + erf

(
x̃(n, c)− ν√

2 ∆ν

)]
. (4.3.18)

This equation is valid for c > 0; the summation on the right-hand side starts at n = 1
because −2 lnλ(n = 0, x) = 0 for all x, so that points with n = 0 do not contribute to
the summation/integration region of equation (4.3.16).

If the true value of ν was known, or if the survivor function of λ was independent
of ν, a p value could be calculated from observed data (nobs, xobs) by setting c =
−2 lnλ(nobs, xobs) in the above equations. The tail probability of −2 lnλ is plotted as
a function of ν and c in Figures 4 and 5 respectively. There is a clear dependence on
the true value of ν. A natural simplification is to examine the limit ν →∞, for which
case there are theorems describing the behavior of −2 lnλ. In the present problem
there are two free parameters under the alternative hypothesis (µ and ν) and only one
under the null (ν), which would suggest that the distribution of −2 lnλ is chisquared
with one degree of freedom (χ2

1). However, we must take into account the fact that the
null hypothesis, µ = 0, lies on the boundary of the physical parameter space, µ ≥ 0.
The correct asymptotic result is that, under H0, half a unit of probability is carried by
the singleton {−2 lnλ = 0}, and the other half is distributed as a chisquared with one
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degree of freedom over 0 < −2 lnλ < +∞ [24]; this combined distribution is sometimes
written as 1

2
χ2

0 + 1
2
χ2

1.
Instead of simplifying the problem by taking the asymptotic limit, the supremum

method eliminates the ν dependence by maximizing the p value with respect to all
physical values of ν:

psup = sup
ν≥0

IPr
[
−2 lnλ(N,X) ≥ −2 lnλ(nobs, xobs)

∣∣∣µ = 0, ν ≥ 0
]
. (4.3.19)

The reason for preferring psup to p(ν =∞) is that the former is guaranteed to be
conservative:

Pr(psup ≤ α) ≤ α for all α ∈ [0, 1]. (4.3.20)

It is usually quite difficult to calculate the supremum. This can be seen from the
top left plot in Figure 4, which shows many local maxima in the tail probability as
a function of ν, when ∆ν = 0.1; most of these maxima even exceed the asymptotic
value of the tail probability. Fortunately, these oscillations disappear for ∆ν values of
order 1 or larger. In these cases the tail probability exhibits an initial sharp rise with
ν, and after a very shallow local maximum (barely perceptible in the top right plot),
it continues to rise very slowly toward its asymptotic value. For ∆ν = 0.47, Figure 5
illustrates the simultaneous convergence of the whole tail probability curve as the true
value of ν increases from 0.2 to 2.0: the asymptotic curve is never crossed.

We conclude from this brief investigation that, for the likelihood ratio of equation
(4.3.14), the supremum of the p value is correctly given by its asymptotic limit when ∆ν
is of order 1 or larger. For small values of ∆ν the asymptotic limit may still provide an
acceptable approximation. As we will show in section 4.3.5 however, these conclusions
are not necessarily valid for other likelihood ratio statistics.

4.3.4 Null distribution of supremum p values

The null distribution of supremum p values is given by:

IPrH0

[
psup(N,X) ≤ α

]
=

∑
n

∫
dx

psup(n,x)≤α

νn e−ν

n!

e
−1

2

“
x−ν
∆ν

”2

√
2π∆ν

. (4.3.21)

Since we use the asymptotic limit of the −2 lnλ distribution, 1
2
χ2

0+
1
2
χ2

1, to approximate
the supremum p value corresponding to a likelihood ratio λ, the inequality psup ≤ α is
equivalent with:

1

2

∫ ∞

−2 ln λ

e−t/2

√
2π t

dt ≤ α for λ < 1. (4.3.22)

Inverting this relation yields:

− 2 lnλ ≥ 2
[
erf−1(1− 2α)

]2
, for 0 ≤ α ≤ 1/2, (4.3.23)
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suggesting that the right-hand side of equation (4.3.21) is identical to that of equation
(4.3.16) if we substitute 2[erf−1(1− 2α)]2 for the constant c. With this substitution we
can use equation (4.3.18) to calculate the null distribution of these p values. Figures 6
and 7 show the cumulative probability Pr(psup ≤ α) versus α. The plots are for various
values of the true background ν and uncertainty ∆ν; there is conservatism in all cases,
except for ∆ν = 0.1, where some minor, localized liberalism can be detected.

All the cumulative p value distributions have a flat region between α = 1/2 and
1, which can be explained as follows. Since we use the asymptotic limit distribution
1
2
χ2

0 + 1
2
χ2

1 to convert an observed value of −2 lnλ into a p value, there are no p values
between 1/2 and 1, and therefore the coverage probability Pr(p ≤ α) is constant for α
between 1/2 and 1. At α = 1 however, the coverage is 100% and there is a discrete
jump whose size is equal to the probability for the p value to be 1. This is also the
probability for −2 lnλ = 0, i.e. for n < x, which is asymptotically 50%.

Example 2 (X(3872) analysis)
For the X(3872) analysis, Table 3 lists the asymptotic p values obtained for several
uncertainties ∆ν. For ∆ν = 0 one finds a p value of 1.54× 10−29, close but not quite
identical to the result of section 2, 1.64× 10−29. The small difference is due to the fact
that for ∆ν = 0 the distribution of −2 lnλ is discrete and no longer represented by a
continuous chisquared, even in the asymptotic limit. The table also indicates that ∆ν
could be as high as 120 before a 5σ discovery claim would begin to look compromised.

∆ν ν̂ −2 lnλ p value No. of σ

0 3234.0 125.99 1.54× 10−29 11.29
10 3253.7 121.99 1.16× 10−28 11.11
20 3305.1 111.51 2.29× 10−26 10.62
40 3443.1 83.71 2.87× 10−20 9.22
60 3565.1 59.73 5.45× 10−15 7.82
80 3653.5 42.86 2.93× 10−11 6.65

100 3714.5 31.53 9.81× 10−9 5.73
120 3756.7 23.86 5.18× 10−7 5.02
140 3786.3 18.54 8.31× 10−6 4.46

Table 3: Calculation of the asymptotic likelihood ratio p value for the X(3872) analysis,
for several values of the uncertainty ∆ν on the background ν. We used x = 3234 and
n = 3893 in all calculations. ν̂ is the maximum-likelihood estimate of ν under the null
hypothesis and λ is the likelihood ratio. For each p value we list the number of σ of a
standard normal density that enclose a total probability of 1− p (on both sides of the
origin).
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4.3.5 Case where the auxiliary measurement is Poisson

The previous supremum p value calculations are based on the observation that, for
a fixed likelihood ratio, the corresponding tail probability (almost) never exceeds its
asymptotic value as ν →∞. To some extent, this good behavior is due to the contin-
uous nature of the subsidiary Gaussian measurement. As the width of that Gaussian
becomes very small however, the Poisson discreteness of the primary measurement
starts manifesting itself, with some loss of conservativeness as a consequence. In this
subsection we examine what happens when the subsidiary measurement itself is also
Poisson.

We start with the likelihood function:

L(µ, ν |n,m) =
(µ+ ν)n

n!
e−µ−ν (τν)m

m!
e−τν , (4.3.24)

where τ , the ratio between the mean backgrounds of the background-only and back-
ground+signal experiments, is assumed known. The likelihood ratio is easily found:

− 2 lnλ(n,m) =

{
−2n ln 1+m/n

1+ τ
− 2m ln 1+n/m

1+1/τ
if n ≥ m/τ ;

0 if n < m/τ.
(4.3.25)

A calculation similar to the one in section 4.3.3 yields the following result for the
survivor function of the above likelihood ratio under the null hypothesis:

IPrH0

[
−2 lnλ(N,M) ≥ c

]
=

∞∑
m=0

(τν)m e−τν

m!
P (ñ(m, c), ν) , (4.3.26)

where P (a, x) is the incomplete gamma function with shape parameter a, and ñ(m, c)
solves the equation:

−2 lnλ(ñ(m, c),m) = c.

Figure 8 shows the likelihood ratio survivor function for νtrue = 0.57, 5.7, and 57.0,
and for τ = 1, 10, 100, and 1000. Looking for example at the point −2 lnλ = 15 in the
three plots with τ = 1, we see that for νtrue = 0.57 the tail probability is way below its
asymptotic value; for νtrue = 5.7 it is actually slightly above that value; and finally, for
νtrue = 57.0 the tail probability is indistinguishable from its asymptotic limit. Correct
evaluation of the supremum p value in this example would require a careful search
for the global maximum. The variation as a function of τ is also interesting: as τ
increases, the survivor function first becomes smoother and then takes the shape of
a step function. Large τ values correspond to a precise determination of ν by the
subsidiary experiment, causing the discreteness of the primary experiment to influence
the shape of the survivor function.

Example 3 (Flat background with known signal window, continued)
For n = 10, m = 7, and τ = 16.5, the observed value of −2 lnλ is 35.03. Figure 9 shows
the variation of the likelihood ratio tail probability with the background rate ν. There
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are several local maxima, and the global maximum appears to occur for ν = 0.994,
yielding a supremum p value of 1.92 × 10−9 (i.e. 6.00σ), just a bit larger than the
asymptotic p value, which is 1.62× 10−9 (i.e. 6.03σ).

A more complex example of a likelihood ratio statistic whose null distribution is
stochastically larger than its asymptotic distribution can be found in [77].

4.4 Confidence interval method

The supremum method has two important drawbacks. The first one is computational,
in that it is often difficult to locate the global maximum of the relevant tail probability
over the entire range of the nuisance parameter ν. The second drawback is conceptual,
in that the very data one is analyzing often contain some information about the true
value of ν, so that it makes little sense to maximize over all values of ν. A technique that
addresses both flaws is the confidence interval method; it is described by its inventors
in references [13, 87].

The method is as follows. Instead of maximizing the tail probability over the entire
nuisance parameter space, maximize only over a 1− β confidence level subset Cβ, and
then correct the p value for the probability that Cβ may not contain the true value of
the nuisance parameter:

pβ = sup
ν∈Cβ

p(ν) + β, (4.4.1)

where the supremum is restricted to all values of ν that lie in the confidence set Cβ.
This confidence set is calculated under the null hypothesis of the test. It can be shown
that pβ, like psup, is conservative:

Pr(pβ ≤ α) ≤ α for all α ∈ [0, 1]. (4.4.2)

Of course, this conservative behavior is only guaranteed if β is chosen before looking
at the data. Since pβ is never smaller than β, β should be chosen suitably low. If we
are interested in a 5σ discovery for example, that would correspond to a test size of
5.7×10−7, and it would be reasonable to take a 6σ confidence interval for the nuisance
parameter, corresponding to β = 1.97× 10−9.

Note that the confidence interval method uses the data twice, first to calculate a
confidence interval on the nuisance parameter, and then to compute a tail probability.
The addition of β on the right-hand side of equation (4.4.1) can be interpreted as a
correction for this double-use. The procedure of using observed data more than once
to better constrain a p value calculation, the result of which is subsequently adjusted
to restore uniformity or conservatism over a reference ensemble, is not uncommon. It
will reappear in section 4.5.1 with the introduction of adjusted plug-in p values, and
in section 4.8.4 with the calibration of posterior-predictive p values.
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4.4.1 Application to likelihood ratio problem

We illustrate the confidence interval method with the Poisson×Gaussian likelihood
problem discussed in section 4.3.2. As shown in Figure 4, for ∆ν not too small, the tail
probability of the likelihood ratio statistic tends to increase smoothly as a function of
the unknown background rate ν. This suggests the use of an upper limit as confidence
interval for ν, as this will minimize the supremum of the tail probability in equation
(4.4.1), yielding a smaller p value. Let ˆ̂ν be the maximum likelihood estimate of ν
under the null hypothesis:

ˆ̂ν(n, x) =
x−∆ν2

2
+

√(
x−∆ν2

2

)2

+ n∆ν2. (4.4.3)

Note that this estimate is always positive or zero, as required for a Poisson mean. A β
confidence level upper limit νu on ν can be constructed by solving:

F
(

ˆ̂νobs

∣∣∣ νu

)
= 1 − β, (4.4.4)

where ˆ̂νobs is the observed value of ˆ̂ν and F
(

ˆ̂ν
∣∣∣ ν) is the cumulative distribution

function of ˆ̂ν when ν is the true value:

F
(

ˆ̂νobs

∣∣∣ ν) =
∑

n

∫
dx

ˆ̂ν(n,x) ≤ ˆ̂νobs

νn e−ν

n!

e
−1

2

“
x−ν
∆ν

”2

√
2π∆ν

. (4.4.5)

It is straightforward to verify that ∂ ˆ̂ν(n, x)/∂x ≥ 0, so that the inequality ˆ̂ν(n, x) ≤
ˆ̂νobs is equivalent to x ≤ x̃(n), where:

x̃(n) = ˆ̂νobs +

(
1− n

ˆ̂νobs

)
∆ν2. (4.4.6)

This makes it possible to perform the integral in equation (4.4.5), yielding:

F
(

ˆ̂νobs

∣∣∣ ν) =
∞∑

n=0

νn e−ν

n!

1

2

[
1 + erf

(
ˆ̂νobs − ν + (1− n/ˆ̂νobs)∆ν

2

√
2 ∆ν

)]
(4.4.7)

This expression can be substituted in equation (4.4.4) to calculate upper limits by
numerical methods.

Example 4 (X(3872) analysis, continued)
Table 4 shows the result of applying the confidence interval method to the X(3872)
analysis, using a 6σ upper limit on ν.
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∆ν ULβ νmax supCβ
p(ν) pβ Nσ

10 3312 3312 1.13× 10−28 1.97× 10−9 6.00
20 3416 3416 2.23× 10−26 1.97× 10−9 6.00
40 3639 2451 2.83× 10−20 1.97× 10−9 6.00
60 3817 701 5.43× 10−15 1.97× 10−9 6.00
80 3942 569 2.93× 10−11 2.00× 10−9 6.00

100 4027 618 9.81× 10−9 1.18× 10−8 5.70
120 4085 650 5.18× 10−7 5.20× 10−7 5.02
140 4126 673 8.31× 10−6 8.31× 10−6 4.46

Table 4: Confidence interval p values for the X(3872) analysis, for several values of
the uncertainty ∆ν on the background ν. The test statistic is the likelihood ratio. All
calculations useX = 3234, N = 3893, and a 6σ upper limit ULβ for ν (β = 1.97×10−9).
The value of ν that maximizes the tail probability, νmax, is shown in column 3. For
purposes of illustration, column 4 provides the p value before its correction for the
choice of β. Column 5 gives the corrected p value and column 6 the corresponding
number of σ’s for a standard normal density.

As mentioned before, for non-zero ∆ν, pβ will never be smaller than β; this is now easily
seen from column 6 of Table 4. For small values of ∆ν, a smaller choice of β might
have allowed us to report a more significant result. On the other hand, decreasing β
increases the region Cβ over which the p value is maximized, which could lead to a less
significant result. Clearly, for any observed data there is an optimal value of β that
minimizes pβ. Unfortunately one cannot choose β on the basis of the observed data
without compromising the conservatism of the method.

Comparing with the results of the supremum method in Table 3, we see that here
too ∆ν would have to be greater than about 120 for the confidence interval p value to
fail a 5σ discovery threshold cut.

Table 3 illustrates that for the X(3872) data the confidence interval p value increases
with the magnitude of the systematic uncertainty ∆ν, as required by the monotonicity
criterion of section 4. It is interesting to note that this criterion is sometimes violated for
small values of ∆ν. For example, having observed n = 12 and x = 5.7, the 6σ confidence
interval p value will be 0.01135 if ∆ν = 0.1 and 0.01127 if ∆ν = 0.47. This effect is
entirely due to the discreteness of Poisson statistics, as manifested by the oscillatory
behavior of the tail probability in the upper left plot of Figure 4. Indeed, many local
maxima in that plot (corresponding to ∆ν = 0.1) are slightly higher than the plateau in
the upper right plot of the same figure (∆ν = 0.47). One could presumably avoid this
problem by “averaging out” the oscillations at ∆ν = 0.1, but at the cost of introducing
some liberalism in the ensemble behavior of the resulting p values.
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4.4.2 Null distribution of confidence interval p values

Figures 10 and 11 show the cumulative distribution of confidence interval p values under
the null hypothesis (solid lines). These distributions are compared to the corresponding
ones for supremum p values (dashed lines). The confidence interval p values perform
slightly better, in the sense that their null distributions are slightly closer to uniformity
(dotted lines). This is to be expected, since confidence interval p values make better
use of the information contained in the data about the nuisance parameter. That the
effect is rather small is due to the optimality of the likelihood ratio statistic in this
problem.

Figure 12 shows the effect of changing the confidence level of the nuisance parameter
interval from β1 = 1.97×10−9 to β2 = 2.70×10−3. For the top plot, the test statistic is
the likelihood ratio λ, whose tail probability has a fairly flat distribution as a function
of ν. As a result, the difference between pβ1 and pβ2 mainly comes from the second
term in equation (4.4.1) and is approximately equal to β2 − β1 for α values above the
β2 threshold. The test statistic for the bottom plot is simply the maximum likelihood
estimate µ̂ of the signal rate, see equation (4.3.13). This is a poor choice, since it does
not take into account the variance of that estimate, as the Wald statistic does. However,
it helps to illustrate a couple of points. The first one is that the null distribution of p
values based on µ̂ is much more conservative than that of p values based on λ. The
second point is that the former distribution is also much more sensitive to the choice
of β. Clearly, it pays to choose the test statistic carefully.

4.5 Bootstrap methods

Perhaps the simplest and most naive method for getting rid of a nuisance parameter is
to estimate it, using for example a maximum-likelihood method, and then to substitute
the estimate in the calculation of the p value. This is known as the “plug-in” method,
or more generally as a parametric bootstrap. For our example of a Poisson observation
n with a Gaussian measurement x of the background rate ν, the likelihood function is:

L(µ, ν |n, x) =
(µ+ ν)n e−µ−ν

n!

e
−1

2

“
x−ν
∆ν

”2

√
2π ∆ν

, (4.5.1)

where µ is the signal rate, which is zero under the null hypothesis H0. The maximum-
likelihood estimate of ν underH0 is obtained by setting µ = 0 and solving ∂ lnL/∂ν = 0
for ν. This yields:

ˆ̂ν(n, x) =
x−∆ν2

2
+

√(
x−∆ν2

2

)2

+ n∆ν2. (4.5.2)

The plug-in p value corresponding to an observation (n0, x0) is then:

pplug(n0, x0) ≡
+∞∑

n=n0

ˆ̂ν(n0, x0)
n e−

ˆ̂ν(n0,x0)

n!
, (4.5.3)
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and can be evaluated with the techniques described in section 2.3.1. Note that n0,
the measurement which may be showing an interesting deviation from expectations,
is included in the calculation of the estimate ˆ̂ν. This is because the p value is al-
ways calculated under the null hypothesis, and under that hypothesis the process that
generated n0 contains no signal.

In principle there are two grounds on which plug-in p values can be criticized. The
first is that these p values make double use of the data, once to estimate the nuisance
parameter under the null hypothesis, and then again to calculate the tail probability.
This tends to work in favor of the null hypothesis. The second criticism is that plug-in
p values do not incorporate the uncertainty on the estimated value of the nuisance
parameter. This results in exaggerated significances and hence works against the null
hypothesis.

Example 5 (X(3872) analysis, continued)
Overall, the effect of double use of the data seems to dominate the behavior of plug-
in p values, as illustrated for the X(3872) example in columns 2 and 3 of Table 5.
These p values provide significantly less evidence against the null hypothesis than the
corresponding supremum p values of Table 3.

Plug-in Adjusted plug-in
∆ν pplug No. of σ pplug,adj No. of σ

0 1.64× 10−29 11.28 1.64× 10−29 11.28
10 8.92× 10−28 10.92 1.13× 10−28 11.11
20 1.47× 10−23 10.00 2.23× 10−26 10.63
40 3.12× 10−14 7.59 2.85× 10−20 9.23
60 3.24× 10−8 5.53 5.49× 10−15 7.82
80 4.53× 10−5 4.08 2.96× 10−11 6.65

100 1.86× 10−3 3.11 9.90× 10−9 5.73
120 1.37× 10−2 2.47 5.22× 10−7 5.02
140 4.27× 10−2 2.03 8.35× 10−6 4.46

Table 5: Calculation of the plug-in and adjusted plug-in p values for the X(3872)
analysis, for several values of the uncertainty ∆ν on the background ν. We used
x0 = 3234 and n0 = 3893 in all calculations. For each p value we list the number of σ
of a standard normal density that enclose a total probability of 1− p.

To compute the distribution of plug-in p values under the null hypothesis, we note
that pplug(n, x) increases with ˆ̂ν(n, x), which itself increases with x. Therefore the
reasoning used to obtain equation (4.1.7) in section 4.1 can be applied here, yielding,
for 0 ≤ α < 1:

IPr
[
pplug(N,X) ≤ α

∣∣∣H0

]
=

∞∑
n=1

νn e−ν

n!

1

2

[
1 + erf

(
x̃n(α)− ν√

2 ∆ν

)]
, (4.5.4)
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where x̃n(α) is defined implicitly by the equation pplug(n, x̃n(α)) = α. By rewriting
definition (4.5.3) of the plug-in p value as the lower tail of a gamma distribution, and
solving equation (4.5.2) for x, it can be seen that

x̃n(α) = γn,α +

(
1 − n

γn,α

)
∆ν2, (4.5.5)

where γn,α is the αth quantile of a gamma distribution with shape parameter n. The
summation on the right-hand side of equation (4.5.4) starts at n = 1 because pplug(n =
0, x) equals 1 regardless of x, so that n = 0 does not contribute to the coverage
probability for α < 1. The null distribution of plug-in p values is illustrated by the
dashed lines in Figures 13 and 14. For large relative uncertainty ∆ν/νtrue, this p value is
extremely conservative, as a consequence of the double use of the data mentioned above.
Of all the p values studied in this note, only the posterior-predictive one (section 4.8) is
more conservative. The latter suffers from the same defects as pplug and is apparently
not helped by its use of a Bayesian posterior to account for parameter uncertainties.
For some values of ∆ν, the plug-in p value appears to be slightly liberal at high values
of α. By itself this is not too worrisome, since in common practice only small values
of pplug are of interest.

In the next subsection we describe a method to correct the excessive conservatism
of plug-in p values.

4.5.1 Adjusted plug-in p values; iterated bootstrap

Suppose we knew the exact cumulative distribution function Fplug of plug-in p values
under the null hypothesis of a particular testing problem. Then the quantity Fplug(pplug)
would be an exact p value since its distribution is uniform by construction. In general
however, Fplug depends on one or more unknown parameters and can therefore not
be used in this way. The next best thing we can try is to substitute estimates for
the unknown parameters in Fplug. Accordingly, we define the adjusted plug-in p value
corresponding to pplug by: [80]

pplug,adj ≡ Fplug(pplug | θ̂), (4.5.6)

where θ̂ is an estimate for the unknown parameters collectively labeled by θ. For our
Poisson problem with a Gaussian uncertainty on the mean, Fplug is given by equation

(4.5.4), and therefore, setting ˆ̂ν0 ≡ ˆ̂ν(n0, x0):

pplug,adj(n0, x0) =


∞∑

n=1

ˆ̂νn
0 e

−ˆ̂ν0

n!

1

2

[
1 + erf

(
x̃n(pplug)− ˆ̂ν0√

2 ∆ν

)]
if n0 > 0,

1 if n0 = 0.

(4.5.7)

Some null distributions of pplug,adj are plotted as solid lines in Figures 13 and 14. In
spite of a few localized regions of slight liberalism, the overall improvement with respect
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to pplug is rather dramatic, making this p value a good candidate for use in this and
perhaps other problems.

Example 6 (X(3872) analysis, continued)
For the X(3872) analysis, the adjusted plug-in p values are listed in columns 4 and
5 of Table 5. It can be seen that the adjustment is quite effective in restoring the
significances to values comparable with those of the supremum method.

The adjustment technique just described is known as a double parametric bootstrap
and can also be implemented in Monte Carlo form. Given data (n, x), the corresponding
pseudo-code is as follows:

1. Compute ˆ̂ν = (x−∆ν2)/2 +
√

(x−∆ν2)2/4 + n∆ν2.

2. Use ˆ̂ν to generate M bootstrap samples (n?
i , x

?
i )i=1,...,M .

3. Calculate p? = #{n?
i ≥ n, 1 ≤ i ≤ M}/M , the single bootstrap estimate of the

plug-in p value.

4. For each bootstrap sample (n?
i , x

?
i ):

(a) Calculate ˆ̂ν?
i = (x?

i −∆ν2)/2 +
√

(x?
i −∆ν2)2/4 + n?

i ∆ν
2.

(b) Use ˆ̂ν?
i to generate N bootstrap samples (n??

ij )j=1,...,N .

(c) Calculate p??
i = #{n??

ij ≥ n?
i , 1 ≤ j ≤ N}/N .

5. Set p?? = #{p??
i ≤ p?, 1 ≤ i ≤ M}/M , the double bootstrap estimate of the p

value.

Although this algorithm can easily be generalized to situations more complex than the
one examined here, its double bootstrap loop prevents one from calculating very small
p values with current standards of computational speed (the X(3872) significances for
example, are certainly out of reach). This problem can often be alleviated by the
method of bootstrap recycling, described in Reference [74]. In theory it is possible
to add even more layers of bootstrapping to further improve the uniformity of pplug.
Whether this is computationally feasible is of course a different question. It is also
possible to use bootstrapping to improve other p values, such as the posterior-predictive
one for instance.

4.5.2 Case where the auxiliary measurement is Poisson

Suppose next that in the above calculations we replace the subsidiary Gaussian mea-
surement x by a Poisson count m with mean τν, as in the additive scenario of section
4.2, equation (4.2.4). The plug-in p value is then:

pplug(n0,m0) ≡
+∞∑

n=n0

ˆ̂ν(n0,m0)
n e−

ˆ̂ν(n0,m0)

n!
, (4.5.8)
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with ˆ̂ν(n0,m0) the maximum likelihood estimate of ν under the null hypothesis:

ˆ̂ν(n0,m0) =
n0 +m0

1 + τ
≡ ˆ̂ν0.

The null distribution of pplug is now, for 0 ≤ α < 1:

IPr
[
pplug(N,M) ≤ α

∣∣∣H0

]
=

∞∑
n=1

νn e−ν

n!

[
1 − P

(
m̃n(α) + 1, τν

)]
, (4.5.9)

where P (a, x) is the incomplete gamma function with shape parameter a, and m̃n(α)
solves the equation pplug(n, m̃n(α)) = α and has the form:

m̃n(α) = max
{
b(1 + τ) γn,αc − n, 0

}
. (4.5.10)

The notation bxc indicates the largest integer below x. The adjusted plug-in p value
for this problem can be derived immediately from equation (4.5.9):

pplug,adj(n0,m0) =


∞∑

n=1

ˆ̂νn
0 e

−ˆ̂ν0

n!

[
1− P

(
m̃n(pplug) + 1, τ ˆ̂ν0

)]
if n0 > 0,

1 if n0 = 0.

(4.5.11)

Example 7 (Flat background with known signal window, continued)
For n0 = 10, m0 = 7, and τ = 16.5, the maximum likelihood estimate of the background
in the signal window is 0.971 under the null hypothesis. The plug-in p value is 8.56×
10−8 (5.36σ), whereas the adjusted plug-in p value is 1.16× 10−9 (6.09σ).

4.5.3 Conditional plug-in p values

A question that often arises with the type of problem discussed in example 7, is why one
includes the number of events observed in the signal window, n0, in the background
estimate ˆ̂ν0 for that window. This seems needlessly conservative since n0 includes
signal contributions under the alternative hypothesis. If the latter is true, ˆ̂ν0 will
almost certainly overestimate the true background, resulting in the true significance
being underestimated.

One way to address this problem is to estimate the background from the conditional
pdf of the data given the observed value of the test statistic. In example 7 we observe
two independent event counts, n0 and m0, and the test statistic is n0; the conditional
pmf is trivial to obtain:

f(n,m |n = n0) = IPr(N = n&M = m |N = n0)

=
IPr(N = n0 &M = m)

IPr(N = n0)
= IPr(M = m) = f(m).
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The conditional MLE of the background is therefore the MLE of the auxiliary mea-
surement, m/τ . P values obtained with a conditional plug-in estimate of the nuisance
parameter are called conditional plug-in p values, notation pcplug, in Ref. [80].

Unfortunately it is easy to see that pcplug misbehaves in the case of example 7.
Indeed, the probability for the conditional background estimate m/τ to be zero while
observing a nonzero number of events in the signal region is e−τν (1− e−ν) under H0.
This is also the probability for the conditional plug-in p value to be exactly zero and
is therefore a lower bound on the null probability of pcplug: IPr(pcplug ≤ α |H0) ≥
IPr(pcplug = 0 |H0) > 0, regardless of α. In other words, the conditional plug-in p value
is guaranteed to be liberal for small values of α. As can be seen from equation (4.5.11),
this problem will not disappear by adjusting the conditional plug-in p value. The same
difficulty occurs when the auxiliary measurement is Gaussian, since in that case the
conditional background estimate is zero whenever the measurement x is negative, an
event that happens with finite probability even when signal events are observed.

A general result derived in ref. [80] is that both pplug and pcplug are asymptotically
uniform under H0 provided the asymptotic mean of the test statistic is independent
of the parameter of interest. When this condition is violated, pplug is asymptotically
conservative and pcplug asymptotically liberal.

4.5.4 Nonparametric bootstrap methods

The ultimate nuisance parameter problem is probably one in which nothing at all is
known about the probability distribution function F (x) of the data, not even its form.
If we collect a sample of n measurements x1, . . . , xn, we can estimate F (x) by the
empirical distribution function F̂ (x), which puts probability 1/n on each data point
xi:

F̂ (x) =


0 if x < x(1),

i/n if x(i) ≤ x < x(i+1), i = 1, . . . , n− 1,

1 if x ≥ x(n),

(4.5.12)

where x(1), . . . , x(n) is the sample x1, . . . , xn sorted in ascending order. In this non-
parametric setup it makes little sense to talk about “parameters” such as the mean or
width, unless these are viewed as functionals of F . For example, for the mean θ of F
we can write:

θ = θ(F ) =

∫
x dF (x). (4.5.13)

The so-called plug-in estimate of θ is then obtained by replacing F by F̂ , which gives
for the above example:

θ̂ ≡ θ(F̂ ) =

∫
x dF̂ (x) =

1

n

n∑
i=1

xi. (4.5.14)

In addition to plug-in estimates, bootstrap methodology allows one to estimate stan-
dard errors and correlations, construct confidence intervals and limits, etc. Significance
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tests are also possible, but they involve an additional subtlety. Whereas interval es-
timates can be based directly on F̂ , the significance levels of a test statistic T are
determined by the null distribution of T . When testing H0 : θ = θ0 for example, we
need an estimate F̃ of F that satisfies the constraint θ(F̃ ) = θ0. One technique for
obtaining this F̃ is the weighted bootstrap, whereby the 1/n weights used to construct
F̂ are replaced by more general weights pi with 0 ≤ pi ≤ 1 and

∑n
i=1 pi = 1:

F̃ (x) =


0 if x < x(1),∑i

j=1 pj/n if x(i) ≤ x < x(i+1), i = 1, . . . , n− 1,

1 if x ≥ x(n),

(4.5.15)

The weights pj can be determined by minimizing the Kullback-Leibler distance between

F̃ and F̂ , namely −
∑n

i=1 ln(npi)/n, subject to the constraint θ(F̃ ) = θ0. [34] The p
value of interest is then obtained by estimating the fraction of times |θ(F̃ ?) − θ0| is
larger than or equal to its observed value, where F̃ ? is a bootstrap resample from F̃ .

An alternative approach to nonparametric bootstrap significance testing is to re-
place the p value by the empirical strength probability (ESP). Let the null hypothesis
be H0 : θ ∈ Θ0, and generate bootstrap samples from the unweighted empirical distri-
bution function F̂ . Calculate the plug-in estimate θ̂ of θ for each sample, and count
the fraction of θ̂ values that belong to Θ0: this is the ESP for testing H0. If Θ0 has zero
measure, the ESP is defined as the confidence level of the largest bootstrap confidence
set that does not intersect Θ0. Note that these definitions make no reference to a null
distribution, so that the ESP is not a p value; it is asymptotically uniform under the
null hypothesis, but may not be so in finite samples. For an interesting interpretation
and corrections for nonuniformity, see [89].

4.6 Fiducial method

The fiducial approach to statistics was initiated by Fisher, who wished to represent
the uncertainty on a parameter in a way that only depends on the data observed and
requires neither the specification of a Bayesian prior nor that of a frequentist reference
ensemble. Although Fisher’s ideas were studied by many statisticians over the years,
they did not lead to a widely accepted statistical paradigm, mainly due to difficulties
with their mathematical and philosophical foundations. They recently reappeared
however, under the guise of generalized inference [97, 60, 53, 54], and were shown to
have good frequentist properties in the asymptotic limit. Furthermore, they are quite
generally applicable. These last two features make the fiducial method interesting to
study in the context of significance calculations.

In the pivotal approach to the fiducial method [54], the starting point is the obser-
vation that if X is a continuous random variable whose cumulative probability distri-
bution F (x | θ) depends on a parameter θ, then the quantity

U = F (X | θ) (4.6.1)
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has a uniform distribution between zero and one, regardless of the value of θ. Suppose
now that we observe X = xobs. Keeping X fixed at its observed value, the above
equation defines a relationship between U and θ. If this relationship is one-to-one,
then the uniform distribution of U induces a distribution for θ: this is the fiducial
distribution of θ. In general however, the relationship between U and θ may not
be one-to-one and X may be discrete instead of continuous, so that a more careful
definition is needed. One first assumes that a function G can be defined so that:

X = G(U | θ). (4.6.2)

If X is continuous, then G is simply the inverse of the distribution function F in
equation (4.6.1). Working with G is more general however, since, as will be shown
in section 4.6.2, it allows the theory to be extended to discrete random variables. A
perhaps more intuitive way to think of G is as the Monte Carlo algorithm by which
random numbers of a given distribution are generated from a set of uniform random
numbers. Equation (4.6.2) is known as the structural equation of the problem. The
next step is to introduce a set-valued function

Q(x, u) = {θ : x = G(u | θ)}. (4.6.3)

Assume furthermore that for any non-empty measurable set S it is possible to choose
one element W (S) from S or its boundary. A weak fiducial distribution for θ is then
defined as the conditional distribution of W (Q(xobs, U)) given Q(xobs, U) 6= ∅. The
quantity W (Q(xobs, U)) itself is called a weak fiducial quantity for θ, where “weak”
refers to the general non-uniqueness of this construction. Note that it is not always
necessary for U in equation (4.6.2) to be a uniform random variable. For example, for
a Gaussian random variable X with unit width and unknown mean θ, equation (4.6.2)
can be replaced by:

X = Z − θ,

where Z is Gaussian with unit width and zero mean. The corresponding weak fiducial
distribution for θ is Gaussian with unit width and mean xobs, the observed value of X.

There exists no general method that will systematically yield all possible weak fidu-
cial quantities for a given problem. However, an easy and useful recipe is available.[60,
53] To formulate it we consider a slightly more general problem involving k unknown
parameters α1, α2, . . . , αk, and where the parameter of interest θ is a function of the
αi. We make the following assumptions:

1. There exists a set of observable statistics, (X1, X2, . . . , Xk), that is equal in num-
ber to the number of unknown parameters αi.

2. There exists a set of invertible pivots7, (V1, V2, . . . , Vk), relating the statistics (Xi)
to the unknown parameters (αi).

7Pivots are random variables Vi that depend on the data Xj and the parameters αk, but whose
joint distribution is free of unknown parameters. They are called invertible if, for fixed values of the
Xj , the mapping (αk) → (Vi) is invertible.
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The recipe is then as follows:

1. By writing the parameter of interest, θ, in terms of the parameters αi, express θ
in terms of the statistics Xi and the pivots Vi.

2. A weak fiducial quantity for θ is obtained by replacing the Xi by their observed
values xi.

Alternatively, if weak fiducial quantities Wi are known for the parameters αi, a weak
fiducial quantity for θ can be constructed by substituting the Wi for the αi in the
expression of θ in terms of αi.

In principle a fiducial distribution can be used in essentially the same way as a
Bayesian posterior distribution, for example to calculate intervals or test hypotheses.
Significance tests can be constructed by integrating a fiducial distribution over the null
hypothesis of interest. We will call the results of such integrations fiducial p values,
in recognition of the fact that these quantities can also be derived as tail probabilities
in the generalized inference framework.[97] The next two subsections demonstrate this
technique in simple situations, the first one involving only continuous statistics, and
the second one a combination of continuous and discrete statistics.

4.6.1 Comparing the means of two exponential distributions

Suppose we are given two samples of data independently drawn from exponentially
distributed populations:

(X1, . . . , Xm) ∼ Gamma(1, µ1), (4.6.4)

(Y1, . . . , Yn) ∼ Gamma(1, µ2), (4.6.5)

where Gamma(α, β) is the Gamma distribution, xα−1 e−x/β/Γ(α) βα, which simplifies
to the exponential one when α = 1. We are interested in comparing the means of the
two populations:

H0 : µ1 − µ2 ≤ δ versus H1 : µ1 − µ2 > δ, (4.6.6)

for some positive constant δ. The parameter of interest in this problem is clearly
θ ≡ µ1−µ2, and either µ1 or µ2 can be retained as nuisance parameter. There are two
sufficient statistics:

X ≡
m∑

i=1

Xi ∼ Gamma(m,µ1), (4.6.7)

Y ≡
n∑

j=1

Yj ∼ Gamma(n, µ2), (4.6.8)

and two pivots:

V1 ≡ X/µ1 ∼ Gamma(m, 1), (4.6.9)

V2 ≡ Y/µ2 ∼ Gamma(n, 1). (4.6.10)
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Applying the above recipe yields the following weak fiducial quantity for θ:

W =
x

V1

− y

V2

. (4.6.11)

The distribution of W is a weak fiducial distribution for θ, and the integral of that
distribution over H0 : θ ≤ δ is a fiducial p value for testing H0:

p = IPr(W ≤ δ) (4.6.12)

It is straightforward to compute this p-value with a Monte Carlo algorithm and a
Gamma random number generator (remembering that in equation (4.6.11) only V1 and
V2 are to be fluctuated, whereas x and y are fixed at the observed values of X and Y ).
Further simplification is possible when δ = 0:

p
∣∣
δ=0

= IPr(W ≤ 0) = IPr
( x
V1

− y

V2

≤ 0
)

= IPr

(
V1

V2

≥ x

y

)
= IPr

(
2V1/2m

2V2/2n
≥ x/m

y/n

)
= IPr

(
F2m,2n ≥ x/m

y/n

)
, (4.6.13)

where F2m,2n is an F variate with (2m, 2n) degrees of freedom. The last equality
on the right comes from the fact that if V1 is a Gamma(m, 1) variate, then 2V1 has
a χ2 distribution with 2m degrees of freedom, and the ratio of two independent χ2

variates, each divided by its respective number of degrees of freedom, is an F variate.
Equation (4.6.13) provides the basis for the usual testing procedure for comparing two
exponential means, which only applies when δ = 0. The fiducial approach allows to
solve the more general testing problem with arbitrary δ 6= 0 by using equation (4.6.12).

4.6.2 Detecting a Poisson signal on top of a background

We now return to our standard example of a Poisson process consisting of a signal with
strength µ superimposed on a background with strength ν:

fN(n |µ+ ν) =
(µ+ ν)n

n!
e−µ−ν . (4.6.14)

The nuisance parameter ν is determined from an auxiliary measurement x with Gaus-
sian pdf:

fX(x | ν) =
e−

1
2(

x−ν
∆ν )

2

√
2π∆ν

. (4.6.15)

It is assumed that ν ≥ 0 but that, due to resolution effects, x can take both positive
and negative values. We are interested in testing

H0 : µ = 0 versus H1 : µ > 0.
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This problem has two parameters, µ and ν, and two statistics, N and X. We need two
invertible pivots or two weak fiducial quantities. Due to the discreteness of the statistic
N , it is in fact easier to construct a weak fiducial quantity for the Gaussian and Poisson
components of the problem separately, and then combine them later. Obtaining a weak
fiducial quantity W1 for the parameter ν of the auxiliary measurement is immediate:

W1 = x − Z∆ν ∼ Gauss(x,∆ν). (4.6.16)

where x is the observed result of the measurement and Z is a standard normal variate.
For the Poisson component of the problem we apply the general structural equation
(4.6.2) to a Poisson variate N with mean λ = µ+ ν. The function G can be defined as
follows:

n = G(u |λ) if and only if IPr(N ≤ n− 1 |λ) < u ≤ IPr(N ≤ n |λ). (4.6.17)

As pointed out previously, this definition can be interpreted as a valid (albeit inefficient)
Monte Carlo method for generating Poisson random numbers with mean λ using an
existing generator of uniform random numbers. For the above G, the function Q of
equation (4.6.3) is easily seen to be interval-valued:

Q(n, u) ≡
{
λ : n = G(u |λ)

}
=
]
q−(n, u) , q+(n, u)

]
,

where

q−(n, u) = λ if and only if IPr(N ≤ n− 1 |λ) = u,

q+(n, u) = λ if and only if IPr(N ≤ n |λ) = u.

Finally, we need a procedure W2 for choosing one point from the interval Q(n, u). In
general we may write:

W2

(
Q(n, u)

)
= q−(n, u) + v

[
q+(n, u)− q−(n, u)

]
, (4.6.18)

where v is a number between 0 and 1. To obtain the distribution of W2(Q(n, U)), where
U is a uniform random number, we start from the correspondence between Poisson and
Gamma probability tails:

n∑
i=0

θi e−θ

i!
=

∫ ∞

θ

dt
tn e−t

Γ(n+ 1)
; (4.6.19)

This relationship implies that:

q−(n, U) ∼ Gamma(n, 1), (4.6.20)

q+(n, U) ∼ Gamma(n+ 1, 1). (4.6.21)
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Therefore:

W2

(
Q(n, U)

)
∼ Gamma(n, 1) + V Gamma(1, 1), (4.6.22)

where V is a random number between 0 and 1 whose distribution the fiducial method
does not specify. Interesting choices include V = 0, V = 1, V ∼ U [0, 1], and V ∼
Beta(1/2, 1/2). [54] For the remainder of this section we will take V = 0. Our choice
of weak fiducial quantity for the Poisson mean λ is therefore q−(n, U), where n is the
number of events observed in the primary experiment (4.6.14), and U is a uniform
random number between 0 and 1.

We now have all the ingredients necessary for applying the recipe of section 4.6. A
weak fiducial quantity for the parameter µ = λ − ν in the combined Poisson+Gauss
measurement is given by:

W = W2 − W1 = q−(n, U) −
(
x − Z∆ν

)
. (4.6.23)

Since W is the difference between a Gamma(n, 1) and a Gauss(x,∆ν) random variable,
its pdf is simply a convolution of these two distributions. However, before proceeding
we must decide how to handle negative values of W , which correspond to unphysical
values of µ. One possibility is to truncate the distribution of W to positive values and
renormalize it over that region. This is similar to the Bayesian technique for defining
priors in the presence of constraints on the parameter space. A second possibility is
again to truncate, but instead of renormalizing one assigns the entire probability of the
W ≤ 0 region to the W = 0 point. The latter approach often leads to good frequentist
properties [54] and is the one we will adopt here. We therefore have:

fW (w |x, n) =

∫ +∞

0

dv
e−

1
2(

w+v−x
∆ν )

2

√
2π∆ν

vn−1 e−v

Γ(n)
if w > 0,

=

∫ +∞

0

dv
1 + erf

(
x−v√
2∆ν

)
2

vn−1 e−v

Γ(n)
if w = 0.

The fiducial p-value is the fiducial probability of µ = 0, which one can immediately
read off from the above expression, i.e.:

p =

∫ +∞

0

dv
1 + erf

(
x−v√
2∆ν

)
2

vn−1 e−v

Γ(n)
. (4.6.24)

This expression is restricted to strictly positive values of n. For n = 0 we must return
to the definition of q−(n, u), which shows that q−(0, u) = 0 regardless of u. Substi-
tuting this result in expression (4.6.23) for W shows that the latter is now Gaussian
distributed, and the p value is:

p
∣∣
n=0

=
1

2

[
1 − erf

(
x√
2∆ν

)]
. (4.6.25)
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The meaning of this expression is clear. If n = 0 we know that both µ and ν must
be small, and therefore x must also be small or negative. If n = 0 and x is a large
positive number, the fiducial p value is small, not because of the presence of a signal,
but because the primary and subsidiary measurements are inconsistent.

It is instructive to compare this p-value with the corresponding prior-predictive
one, equation (4.7.8) in the next section. The only difference is in the denominator of
the integrand, where the prior-predictive p-value contains a factor of 1+ erf(x/

√
2 ∆ν)

instead of 2. For ∆ν � x the two p-values are indistinguishable. This is in fact the
case for the X(3872) data, so we refer the reader interested in some numerical results
to Table 6.

4.6.3 Null distribution of fiducial p values for the Poisson problem

Figures 15 and 16 show the cumulative probability distribution of fiducial p values
under the null hypothesis and for various background strengths and uncertainties.
Comparing with the corresponding plots for the prior-predictive method, one observes
that fiducial p values are much less conservative, while still being nowhere liberal. This
is especially noticeable for large background uncertainties.

4.7 Prior-predictive method

In a widely quoted paper [18], the statistician George E. P. Box presented a pragmatic
view of scientific research, according to which knowledge is acquired by a continuous
interplay between model criticism and model estimation. This strategy of model up-
dating fits most naturally in a Bayesian framework supplemented by sampling theory.
A model is completely specified by the joint probability density p(y, θ |A) for data y
and parameters θ, given all the assumptions A that went into model building. This
density can be factorized as follows:

p(y, θ |A) = p(θ | y, A) p(y |A). (4.7.1)

When actual data y0 are substituted for y, then the first factor on the right becomes
the posterior probability density for θ and can be used for model estimation. The
second factor on the right can be computed before any data become available:

p(y |A) =

∫
p(y | θ, A) π(θ |A) dθ (4.7.2)

and is the prior-predictive distribution. It is the likelihood p(y | θ, A) averaged over the
prior π(θ |A), and represents the distribution of all possible data that could be observed
if the model assumptions are correct. Therefore, the density p(y0 |A), evaluated at
the observed data point y0, can be referred to the whole prior-predictive distribution
p(y |A) in order to perform a diagnostic check of the model. This is the “model
criticism” phase, which leads to modification of the model in advance of confrontation
with further data.
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One possible way to refer p(y0 |A) to p(y |A) is to calculate the tail probability
corresponding to y0. This is known as the prior-predictive p value, pprior:

8

pprior ≡
∫ ∞

y0

dy

∫
dθ p(y | θ, A)π(θ |A) (4.7.3)

For Poisson distributed data with a Gaussian uncertainty on the mean, the prior-
predictive distribution can be expressed as a mixture of Poisson densities weighted by
the truncated Gaussian prior (4.1.4):

p(n0) =

∫ +∞

0

e−
1
2(

ν−x0
∆ν )

2

√
2π∆ν 1

2

[
1 + erf

(
x0√
2∆ν

)] νn0

n0!
e−ν dν, (4.7.4)

and the corresponding prior-predictive p value is:

pprior(n0) =

∫ +∞

0

e−
1
2(

ν−x0
∆ν )

2

√
2π∆ν 1

2

[
1 + erf

(
x0√
2∆ν

)] { +∞∑
n=n0

νn

n!
e−ν

}
dν. (4.7.5)

For computational purposes the expression for pprior can be simplified as follows. First,
assume n0 > 0 and use equation (2.3.2) to replace the Poisson upper tail by a chisquared
lower tail:

pprior(n0) =

∫ +∞

0

dν
e−

1
2(

ν−x0
∆ν )

2

√
2π∆ν 1

2

[
1 + erf

(
x0√
2∆ν

)] ∫ ν

0

du
un0−1 e−u

(n0−1)!
. (4.7.6)

Next, interchange the two integrals and perform the one over ν:

pprior(n0) =

∫ +∞

0

du

∫ +∞

u

dν
e−

1
2(

ν−x0
∆ν )

2

√
2π∆ν 1

2

[
1 + erf

(
x0√
2∆ν

)] un0−1 e−u

(n0−1)!
, (4.7.7)

=

∫ +∞

0

du
1 + erf

(
x0−u√

2∆ν

)
1 + erf

(
x0√
2∆ν

) un0−1 e−u

(n0−1)!
. (4.7.8)

We emphasize that this expression only works for n0 > 0. For n0 = 0, equation (4.7.5)
should be used instead, yielding pprior = 1. For small ∆ν the ratio of error functions in
the integrand of (4.7.8) is a step function with rounded edges, and in the limit ∆ν → 0
one recovers the “unsmeared” p value. The integral is straightforward to calculate
numerically, for example with an open Romberg quadrature algorithm.[78]

8As pointed out in [70], this Bayesian use of p values does not violate the likelihood principle, since
the latter is based on the assumption that the model is adequate, and this is precisely the assumption
one is questioning here.
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Example 8 (X(3872) analysis, continued)
We illustrate this numerical calculation in Table 6 for the X(3872) analysis, with several
values for the systematic uncertainty ∆ν. As can be seen, the systematic uncertainty
has to equal at least 120 counts before the significance decreases below the 5σ level.

Exact calculation Approximations
∆ν pprior No. of σ Laplace Chisquared

0 1.64× 10−29 11.28
10 1.23× 10−28 11.10 1.23× 10−28 1.16× 10−28

20 2.40× 10−26 10.62 2.40× 10−26 2.29× 10−26

40 2.95× 10−20 9.22 2.95× 10−20 2.87× 10−20

60 5.53× 10−15 7.81 5.53× 10−15 5.45× 10−15

80 2.96× 10−11 6.65 2.96× 10−11 2.93× 10−11

100 9.85× 10−9 5.73 9.85× 10−9 9.81× 10−9

120 5.19× 10−7 5.02 5.19× 10−7 5.18× 10−7

140 8.32× 10−6 4.46 8.32× 10−6 8.31× 10−6

Table 6: Calculation of the prior-predictive p value for the X(3872) analysis, for several
values of the uncertainty ∆ν on the background ν. We used x0 = 3234 and n0 = 3893 in
all calculations. For each p value we list the number of σ of a standard normal density
that enclose a total probability of 1 − pprior, as well as the Laplace and chisquared
approximations discussed in section 4.7.4.

4.7.1 Null distribution of prior-predictive p values

The prior-predictive p value is essentially the probability for N to equal or exceed its
observed value under the prior-predictive distribution:

pprior(n0) = IPrpp(N ≥ n0),

where the pp subscript refers to the fact that the probability is to be calculated with
respect to the distribution (4.7.4). If one were to write a Monte Carlo program to
calculate the null distribution of pprior under the prior-predictive distribution, it would
be based on the following algorithm. For any α ∈ [0, 1]:

1. Generate ν according to a Gaussian with mean x0 and width ∆ν;

2. If ν is negative or zero, repeat step 1;

3. Generate n according to a Poisson with mean ν;

4. Calculate pprior(n) and count how often it is less than or equal to α.
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It is clear that the pprior distribution resulting from this algorithm will be uniform, ex-
cept for the inevitable conservatism introduced by the discreteness of Poisson statistics.
Indeed, if we define nc(α) as the smallest value of n for which pprior(n) ≤ α, then:

IPrpp(pprior(N) ≤ α) = IPrpp(N ≥ nc(α)) = pprior(nc(α)) ≤ α.

For a continuous sample space, the last inequality would be replaced by an equality.
This uniformity property of prior-predictive p values is what we termed average

uniformity at the beginning of section 4. For comparison with frequentist methods of
dealing with systematics, it is also interesting to check frequentist uniformity, which
can be done according to the Bayes/frequentism consistency condition discussed in
section 4.1. For this purpose, we assume that the prior information about ν is derived
from a subsidiary measurement x0, and calculate the null distribution of pprior under
fluctuations of both n0 and x0, while keeping ν fixed. We indicate the double source
of randomness in pprior by adding x0 to its argument list, referring to equation (4.7.5).
The following algorithm can then be used, for any α ∈ [0, 1]:

1. Generate x according to a Gaussian with mean νtrue and width ∆ν;

2. Generate n according to a Poisson with mean νtrue;

3. Calculate pprior(n, x) and count how often it is less than or equal to α.

Alternatively, one can proceed semi-analytically, by using equation (4.1.7):

IPr(pprior(N,X) ≤ α) =
+∞∑
n=1

1

2

[
1 + erf

(
x̃n(α)− νtrue√

2 ∆ν

)]
νn

true

n!
e−νtrue , (4.7.9)

and numerically solving
pprior(n, x̃n(α)) = α (4.7.10)

for x̃n(α). Note that the summation in (4.7.9) starts at n = 1, because for n = 0
equality (4.7.10) can only be satisfied if α = 1, regardless of x̃n(α). Conversely, if
α = 1 that equality can only happen for n = 0, in which case x̃n(α) is indeterminate.
Hence these equations should only be used for α < 1. The cumulative probability
IPr(pprior ≤ α) is plotted as a function of α for νtrue = 5.7 and four different values
of ∆ν in Figure 17, and for ∆ν = 0.47 and four different values of νtrue in Figure 18.
In all cases one observes that the cumulative distribution is below the main diagonal,
indicating that the prior-predictive p value is conservative, and rather significantly so
when the uncertainty ∆ν is large compared to νtrue. These plots exhibit a discontinuity
at α = 1 that is more pronounced for small values of νtrue (Figure 18). The cumulative
probability at α = 1 is 100% (trivially), but is strictly less than 100% as one approaches
that point from the left. The reason for this behavior is that pprior(n, x) = 1 whenever
n = 0, regardless of the value of x. Hence, experiments with n = 0 only contribute to
the cumulative probability for α = 1. The probability for n = 0 equals e−νtrue , which
is exactly the size of the discontinuity step.
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4.7.2 Robustness study

So far we have used a truncated Gaussian density to model the prior information about
the nuisance parameter ν. This was justified on the grounds that our information about
ν came from an auxiliary experiment with a Gaussian likelihood function. However,
more often than not, prior information about a nuisance parameter comes from a
combination of measurements, Monte Carlo studies, and theoretical speculations. In
such a situation the Gaussian model is only an approximation and one should check
the robustness of the calculated prior-predictive p value to the choice of prior. As an
illustration, we consider here two alternatives to the Gaussian model, both of which
have heavier tails: the gamma and the log-normal.

• The gamma density is given by:

π(ν |α, β) =
να−1 e−ν/β

Γ(α) βα
(α, β > 0). (4.7.11)

Its mean ν̄ and standard deviation ∆ν are related to α and β as follows:{
ν̄ = αβ

∆ν =
√
αβ

{
α = (ν̄/∆ν)2

β = ∆ν2/ν̄
(4.7.12)

The corresponding prior-predictive p value is:

pprior =

∫ +∞

0

να−1 e−ν/β

Γ(α) βα

∞∑
n=n0

νn

n!
e−ν dν,

=
∞∑

n=n0

∫ +∞

0

νn+α−1 e−ν/ β
β+1

Γ(n+ α)
(

β
β+1

)n+α dν

 Γ(n+ α)
(

β
β+1

)n+α

Γ(α) Γ(n+ 1) βα
,

=
∞∑

n=n0

(
α+ n− 1

n

)(
1

1 + β

)α(
1− 1

1 + β

)n

,

= Iβ/(1+β)(n0, α). (4.7.13)

This is the tail probability of a negative binomial distribution with mean αβ = ν̄
and variance αβ(1+β) = ν̄+∆ν2, and is expressed with the help of an incomplete
beta function on the last line. In the setup specified by the consistency condition
of section 4.1, the gamma prior can arise as the posterior of an auxiliary measure-
ment with a Poisson likelihood whose mean is ν/β and with a uniform hyperprior
for ν. Remarkably, the resulting prior-predictive p value is then identical to the
conditional p value in the additive scenario of section 4.2, provided the (shifted)
shape parameter α− 1 is identified with the number m0 = s0−n0 of background
events observed by the auxiliary measurement, and the scale parameter β is iden-
tified with the ratio of Poisson means 1/τ . This exact correspondence between
prior-predictive and conditional p values was already pointed out in Ref. [68].
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• The log-normal density can be parametrized as:

π(ν | ν0, τ) =
e−

1
2 [

1
τ

ln(ν/ν0)]
2

√
2π ν τ

, (4.7.14)

where the parameters ν0 and τ are related to the mean ν̄ and width ∆ν by:

 ν̄ = ν0 e
τ2/2

∆ν = ν0

√
eτ2 (eτ2 − 1)


ν0 = ν̄

/√
1 +

(
∆ν
ν̄

)2
τ =

√
ln
[
1 +

(
∆ν
ν̄

)2] (4.7.15)

The same derivation that leads from equation (4.7.5) to (4.7.8) can be used to
simplify the expression for the log-normal prior-predictive p value:

pprior =

∫ +∞

0

e−
1
2 [

1
τ

ln(ν/ν0)]
2

√
2π ν τ

∞∑
n=n0

νn

n!
e−ν dν, (4.7.16)

=

∫ +∞

0

1

2

[
1− erf

(
ln(u/ν0)√

2 τ

)]
un0−1 e−u

(n0−1)!
du. (4.7.17)

Example 9 (X(3872) analysis, continued)
The truncated Gaussian, gamma, and log-normal prior densities are compared in Figure
19 for the case of the X(3872) analysis. Some p value comparisons for that analysis
are provided in Table 7. As expected, the significance is lower for the gamma and log-
normal priors than for the truncated Gaussian due to the heavier tail of the former.

For the X(3872) analysis, the truncation of the Gaussian has little effect on the mean
of the prior, so that ν̄ ≈ x0. Obviously this is not necessarily always the case. In
situations where the truncation does have a non-negligible effect, some thought is
required to determine whether the central value resulting from one’s measurements,
calculations, and other ratiocinations should be identified with the mean, median, or
mode of the truncated Gaussian (or gamma or log-normal for that matter). Whenever
the choice to make is not clear, the final inference should be robust against changes in
this choice.

4.7.3 Choice of test statistic

An important consideration in calculating p values is the choice of test statistic. So far
we have used the observed number of events N for this role, both because we have an
alternative hypothesis in mind, namely the presence of a signal which would increase
N with respect to the null hypothesis, and because the distribution of N is easy to
handle. However, even in the absence of a well-defined alternative hypothesis one may
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Truncated Gaussian Gamma Log-Normal
∆ν pprior No. of σ pprior No. of σ pprior No. of σ

10 1.23× 10−28 11.10 1.24× 10−28 11.10 1.24× 10−28 11.10
20 2.40× 10−26 10.62 2.63× 10−26 10.61 2.77× 10−26 10.61
40 2.95× 10−20 9.22 5.34× 10−20 9.16 7.33× 10−20 9.12
60 5.53× 10−15 7.81 1.55× 10−14 7.68 2.66× 10−14 7.61
80 2.96× 10−11 6.65 9.31× 10−11 6.48 1.67× 10−10 6.39
100 9.85× 10−9 5.73 2.89× 10−8 5.55 4.95× 10−8 5.45
120 5.19× 10−7 5.02 1.33× 10−6 4.83 2.11× 10−6 4.74
140 8.32× 10−6 4.46 1.86× 10−5 4.28 2.73× 10−5 4.19

Table 7: Calculation of the prior-predictive p value for the X(3872) analysis as a func-
tion of the uncertainty ∆ν on the background ν, for three choices of background prior:
truncated Gaussian, gamma, and log-normal. All numbers are for a mean background
of ν̄ = 3234 and an observation of n0 = 3893 counts.

wish to test the adequacy of the model used to fit the observations. As pointed out in
[8], one of the advantages of the prior-predictive p value is that it suggests a natural
test statistic for this situation, namely the inverse of the prior-predictive density:

T (N) ≡ 1/p(N), (4.7.18)

where p(n) is given by equation (4.7.4). Large values of T correspond to data that
are unlikely under the null model, where the latter is understood as comprising both
the prior information and the probability density for the observed data. The p value
corresponding to T is:

pprior(T ) = IPrpp(T (N) ≥ T (n0)), (4.7.19)

where n0 is the observed value of N and the probability is calculated with respect to
the prior-predictive distribution (4.7.4). Since T (n) is a concave function of n, there
are two ways in which the event T (N) ≥ T (n0) can happen: either when N ≥ n0, or
when N ≤ n′0, where n0 is assumed to be larger than the mode of p(n) and n′0 is lower
than the mode and such that T (n′0) ≥ T (n0) > T (n′0 + 1). The above p value can then
be rewritten as:

pprior(T ) =

n′0∑
n=0

p(n) +
+∞∑

n=n0

p(n), (4.7.20)

which shows that pprior(T ) is essentially a two-sided p value, inviting rejection of the
null hypothesis if the number of observed events is either too high or too low.

Example 10 (X(3872) analysis, continued)
Table 8 shows the calculation of pprior(T ) for the X(3872) analysis. As expected, the p
values based on T (N) are about twice as large as those based on N .
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∆ν n′0 p1 n0 p2 pprior(T ) ≡ p1 + p2 No. of σ

10 2617 8.56× 10−29 3893 1.23× 10−28 2.08× 10−28 11.05
20 2619 1.66× 10−26 3893 2.40× 10−26 4.06× 10−26 10.57
40 2620 2.27× 10−20 3893 2.95× 10−20 5.21× 10−20 9.16
60 2617 5.99× 10−15 3893 5.53× 10−15 1.15× 10−14 7.72
80 2610 3.29× 10−11 3893 2.96× 10−11 6.25× 10−11 6.54
100 2601 9.56× 10−9 3893 9.85× 10−9 1.94× 10−8 5.62
120 2593 4.60× 10−7 3893 5.19× 10−7 9.79× 10−7 4.90
140 2588 7.38× 10−6 3893 8.32× 10−6 1.57× 10−5 4.32

Table 8: Calculation of the prior-predictive p value for the X(3872) analysis as a
function of the uncertainty ∆ν on the background ν, using the natural statistic T (N)
as test variable. This p value is the sum of p1 and p2, where p1 is the lower tail
probability bounded by n′0 and p2 is the upper tail probability bounded by n0. The
observed number of events is n0, which in this example always lies on the high side
of the prior-predictive distribution. On the other hand, n′0 always lies on the low side
of that distribution, and has (approximately) the same prior-predictive probability
density as n0. We used x0 = 3234 in all calculations.

For our standard Poisson example, prior-predictive p values based on T can be expected
to be conservative, since they are always at least as large as the corresponding p values
based on N , and the latter are already conservative: for any α between 0 and 1:

IPr(pprior(T ) ≤ α) ≤ IPr(pprior ≤ α) ≤ α.

In general, the choice of T as test statistic has some undesirable features.[6] One is
that it leads to p values that are not invariant under one-to-one transformations of the
data. A second type of unpleasantness is that T occasionally yields p values that are
totally useless. For example, if N is a binomial variate with total sample size a and
probability parameter ε, then it is easy to check that T (N) = a + 1, i.e. a constant,
which is useless as an indicator of surprise.

4.7.4 Asymptotic approximations

To facilitate comparison with the supremum method discussed in section 4.3, we work
out the Laplace approximation to the prior-predictive p value of equation (4.7.5). Brief,
application-oriented accounts of the Laplace method can be found in [19, section 5.2.2]
and [66, section 5.1].

Interchanging integral and summation in equation (4.7.5) allows us to rewrite pprior

as follows:

pprior =
+∞∑

n=n0

∫ +∞

0

g(ν, n) dν, (4.7.21)
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where:

g(ν, n) =
e−

1
2(

ν−x0
∆ν )

2

√
2π∆ν 1

2

[
1 + erf

(
x0√
2∆ν

)] νn

n!
e−ν . (4.7.22)

In Appendix A we apply the Laplace method to approximate the integral of g(ν, n)
over ν for small values of ∆ν. The result can be expressed as the profile of g(ν, n)
times a correction:∫ +∞

0

g(ν, n) dν ∼ Cn g(ν̂n, n)

∼ ν̂n√
(ν̂n)2 + n∆ν2

e−
1
2(

ν̂n−x0
∆ν )

2 (ν̂n)n

n!
e−ν̂n , (4.7.23)

where ν̂n maximizes g(ν, n) with respect to ν for each value of n:

ν̂n =
x0 −∆ν2

2
+

√(
x0 −∆ν2

2

)2

+ n∆ν2. (4.7.24)

The Laplace approximation p?
prior of pprior is therefore given by:

p?
prior = K

+∞∑
n=n0

e−
1
2(

ν̂n−x0
∆ν )

2√
ν̂2

n + n∆ν2

(ν̂n)n+1 e−ν̂n

n!
. (4.7.25)

In principle the factor K introduced in the above equation is equal to 1. However, the
Laplace approximation improves if K is determined numerically by the requirement
that p?

prior = 1 for n0 = 0.
A further simplifying approximation can be obtained as follows. First, replace the

sum over n in equation (4.7.25) by an integral:

p?
prior

∼= K

∫ +∞

n0− 1
2

e−
1
2(

ν̂n−x0
∆ν )

2√
ν̂2

n + n∆ν2

(ν̂n)n+1 e−ν̂n

n!
dn, (4.7.26)

where the subtraction of 1/2 from the lower integration limit is a first-order continuity
correction.[27] Next, make the substitution n→ y, where y is defined by:

y(n) = 2

(
n ln

n

ν̂n

+ ν̂n − n

)
+

(
ν̂n − x0

∆ν

)2

. (4.7.27)

This transformation is one-to-one if n0 ≥ x0, a condition that is usually satisfied when
making significance tests and which we will henceforth assume to be true. In section
4.3.2, equation (4.3.15), we showed that y can be interpreted as twice the negative
logarithm of a likelihood ratio. Using Stirling’s approximation for the factorial n!, the
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integral on the right-hand side of equation (4.7.26) can be rewritten in terms of y,
yielding:

p?
prior

∼=
K

2

∫ +∞

y(n0− 1
2
)

e−
1
2

y√
2πn(y)

[
1 + n(y)

(
∆ν/ν̂n(y)

)2]
ln
(
n(y)/ν̂n(y)

) dy, (4.7.28)

where n(y) is the inverse of the y(n) function defined by equation (4.7.27). Although
this function cannot be explicitly written out, it is straightforward to calculate the
first two terms of an asymptotic expansion at y = 0 of the factor multiplying e−y/2 in
the above integrand. This should be a reasonable approximation since e−y/2 peaks at
y = 0:

p?
prior

∼=
K

2

∫ +∞

y(n0− 1
2
)

{
e−

1
2

y

√
2πy

− 1

3
√

2π

x0 + 3∆ν2

(x0 + ∆ν)3/2

e−
1
2
y

2
+ O

(
e−

1
2
y
)}

dy.

(4.7.29)
One easily recognizes in the integrand a linear combination of chisquared densities for
one and two degrees of freedom, so we are finally in known territory. For simplicity
in our numerical computations we will drop the second and higher-order terms in
the expansion, ignore the continuity correction, and set K = 1. Thus we define the
“chisquared approximation” p??

prior to the prior-predictive p value pprior as:

p??
prior =

1

2

∫ +∞

y(n0)

e−
1
2

y

√
2πy

dy. (4.7.30)

We emphasize that this approximation is only valid for n0 ≥ x0, as explained under
equation (4.7.27). Note also that the chisquared approximation is exactly identical to
the result of the supremum method derived in section 4.3.3.

Example 11 (X(3872) analysis, continued)
The performance of the Laplace and chisquared approximations is illustrated in Table 6
as a function of ∆ν and in Table 9 as a function of n0. In the latter, one notes that the
approximations perform extremely well up to significances of 10−16. Even in the worst
case shown, an exact significance of 2.64×10−38, the approximations do not perform all
that badly when measured in numbers of standard deviations: 12.27σ versus 12.94σ.

An interesting feature of Table 9 is how well the chisquared approximation tracks the
Laplace one. Differences between these two become somewhat more pronounced at low
values of x0 and n0. In the top quark evidence case for example, with x0 = 5.7, ∆ν =
0.47, and n0 = 12, one finds an exact prior-predictive p value of 1.59×10−2; the Laplace
approximation gives the same number, but the chisquared one yields 1.26×10−2, about
20% lower.

As stated previously, our main purpose in working out these approximations is to
facilitate comparison with other methods of incorporating systematic uncertainties.
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Exact Approximations
n0 pprior Laplace Chisquared Exact/Lapl. Exact/chisq.

3893 9.85× 10−9 9.85× 10−9 9.81× 10−9 1.00 1.00
4000 3.85× 10−11 3.85× 10−11 3.83× 10−11 1.00 1.00
4100 1.11× 10−13 1.11× 10−13 1.10× 10−13 1.00 1.01
4200 1.69× 10−16 1.69× 10−16 1.68× 10−16 1.00 1.00
4300 1.30× 10−19 1.37× 10−19 1.36× 10−19 0.94 0.95
4400 3.67× 10−23 5.98× 10−23 5.94× 10−23 0.61 0.62
4500 2.25× 10−27 1.41× 10−26 1.40× 10−26 0.16 0.16
4600 2.10× 10−32 1.82× 10−30 1.81× 10−30 0.012 0.012
4700 2.64× 10−38 1.29× 10−34 1.28× 10−34 0.00020 0.00021

Table 9: Calculation of the prior-predictive p value for x0 = 3234, ∆ν = 100, and
various values of n0. The first line (n0 = 3893) corresponds to the X(3872) observation.
For each shown value of n0, the exact prior-predictive p value is given, as well as the
Laplace and chisquared approximations and the ratios of the former to the latter.

In addition, the simplicity of the chisquared approximation makes it useful for quick
back-of-the-envelope estimates and for checking the result of exact calculations. Un-
fortunately, it is hard to judge how well the Laplace approximation (and hence the
chisquared one) should be expected to perform for any given dataset. There is no
simple numerical measure of how far the approximation is from the exact value.

4.7.5 Subsidiary measurement with a fixed relative uncertainty

So far in our standard illustration of the prior-predictive method we have assumed
that subsidiary measurements of the Poisson mean can be negative as well as positive,
due to resolution effects. The subsidiary measurement was considered to have an
absolute uncertainty, i.e. the width of its Gaussian pdf was fixed and independent
of the unknown mean. In the present section we treat the case where the subsidiary
measurements can only come out positive. A natural model for such measurements is
one with a fixed relative uncertainty. Accordingly, we take the subsidiary likelihood to
be Gaussian, but with a width that is proportional to the mean:

Laux.(ν |x0) =
e
−1

2

“
ντ−x0

ντδ

”2

√
2π ντδ 1

2

[
1 + erf

(
1√
2 δ

)] , (4.7.31)

where τ is a known proportionality factor between the Gaussian mean ντ and the
Poisson mean ν, and δ is the known coefficient of variation of the Gaussian. The
likelihood normalization is consistent with the assumption that only positive values of
x0 can occur.
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In order to be able to use this auxiliary measurement in a prior-predictive p value
calculation, we need to select a prior for ν. Assuming no prior information about this
parameter, we choose the reference prior [16], which in this case is simply Jeffreys’
prior, the square root of the expectation value of the second derivative of the negative
log-likelihood. A simple calculation yields:

πaux.(ν) ∝ 1

ν
. (4.7.32)

The posterior density for the auxiliary measurement is then, after proper normaliza-
tion: 9

π(ν |x0) =

√
2

π

x0 e
−1

2

“
ντ−x0

ντδ

”2

ν2 τδ
[
1 + erf

(
1√
2 δ

)] , (4.7.33)

and will be used as ν prior in the primary measurement. The prior-predictive p value
resulting from the observation of n0 events in the primary measurement is the average
of the corresponding tail probability over this density:

pprior(n0, x0) =

∫ +∞

0

dν

{
∞∑

n=n0

νn

n!
e−ν

}√
2

π

x0 e
−1

2

“
ντ−x0

ντδ

”2

ν2 τδ
[
1 + erf

(
1√
2 δ

)] (4.7.34)

For n0 = 0 this is 1. For n0 > 0, manipulations similar to those leading from equation
(4.7.5) to (4.7.8) yield:

pprior(n0, x0) =

∫ +∞

0

du
erf
(

x0−τu√
2 τu δ

)
+ erf

(
1√
2 δ

)
1 + erf

(
1√
2 δ

) un0−1 e−u

(n0 − 1)!
. (4.7.35)

Example 12 (X(3872) analysis, continued)
Table 10 shows some p values for the X(3872) example. They tend to be larger than
the corresponding p values in Table 6 due to the heavier upper tail of the prior (4.7.33)
compared to a Gaussian.

Writing νtrue for the true value of ν, the null distribution of the p value (4.7.35) is:

IPr(pprior(N,X) ≤ α) =
∑

n

∫
dx

pprior(n,x) ≤ α

√
2

π

e
−1

2

“
νtrue τ−x
νtrue τ δ

”2

νtrue τ δ
[
1 + erf

(
1√
2 δ

)] νn
true

n!
e−νtrue .

(4.7.36)

9Note that the naive choice of a flat prior would yield an improper posterior for the auxiliary
measurement, making it impossible to construct the corresponding prior-predictive p value for the
primary observation.
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δ δ × x0 pprior No. of σ

0.00309 10 1.27× 10−28 11.10
0.00618 20 3.29× 10−26 10.59
0.01237 40 2.20× 10−19 9.00
0.01855 60 1.66× 10−13 7.37
0.02474 80 1.15× 10−9 6.09
0.03092 100 2.80× 10−7 5.14
0.03711 120 9.31× 10−6 4.43
0.04329 140 9.61× 10−5 3.90

Table 10: Calculation of the prior-predictive p value for the X(3872) analysis, for several
values of the coefficient of variation δ of the Gaussian measurement of the background
ν. We used x0 = 3234 and n0 = 3893 in all calculations. Each p value is given both as
a probability and as a number of sigma’s.

Equation (4.7.35) shows that for fixed n0 > 0, pprior increases with x0. It is therefore
possible to define a function x̃α(n) such that

pprior(n, x̃α(n)) = α for n > 0.

The cumulative probability of the prior-predictive p value becomes then:

IPr(pprior(N,X) ≤ α) =
+∞∑
n=1

∫ x̃α(n)

0

dx

√
2

π

e
− 1

2

“
νtrue τ−x
νtrue τ δ

”2

νtrue τ δ
[
1 + erf

(
1√
2 δ

)] νn
true

n!
e−νtrue ,

=
+∞∑
n=1

erf
(

x̃α(n)−νtrue τ√
2 νtrue τ δ

)
+ erf

(
1√
2 δ

)
1 + erf

(
1√
2 δ

) νn
true

n!
e−νtrue .

This expression is valid for α < 1. Figures 20 and 21 show this null distribution for
various values of νtrue and δ. All plots show some conservatism, although the latter is
less pronounced than when the Gaussian width is fixed (Figures 17 and 18).

4.8 Posterior-predictive method

The posterior-predictive p value estimates the probability that a future observation will
be at least as extreme as the current observation if the null hypothesis is true.[73] This
probability is calculated with the help of all the relevant information that is currently
available, including the current observation (in contrast, the prior-predictive p value
only uses information that was available before the current observation was made).

Let xrep represent a future replication of the observation x, and suppose that the
distribution of x depends on a parameter of interest µ and a nuisance parameter ν. We
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have then, by applying the definition of conditional probability densities:

p(xrep, ν |x, µ) = p(xrep |µ, ν) p(ν |x, µ), (4.8.1)

where we also used the fact that xrep and x are independent given (µ, ν). If the null
hypothesis is of the form H0 : µ = µ0, the posterior-predictive density of xrep under H0

is obtained by setting µ = µ0 in the above equation and integrating over ν:

p(xrep |x,H0) =

∫
dν p(xrep |µ0, ν) p(ν |x, µ0), (4.8.2)

where p(xrep |µ0, ν) is the likelihood under H0, and p(ν |x, µ0) is the posterior density
of the nuisance parameter ν conditional on H0:

p(ν |x, µ0) =
p(x |µ0, ν) π(ν |µ0)∫
dν p(x |µ0, ν) π(ν |µ0)

, (4.8.3)

with π(ν |µ0) a conditional prior density for ν given µ = µ0. The posterior-predictive
p value is then the appropriate tail-area under p(xrep |x,H0):

ppost =

∫ +∞

x

dxrep p(xrep |x,H0). (4.8.4)

Note the presence of x both in the integrand and in the lower boundary of the inte-
gration region. This double use of the data, once to construct the posterior-predictive
density and then again when calculating the p value, may lead to unnatural results in
some situations.10 To overcome this difficulty, reference [8] proposes the use of a partial
posterior-predictive p value, itself the tail probability of a partial posterior-predictive
density. The latter can be obtained from equation (4.8.2) by replacing the posterior
p(ν |x, µ0) in the integrand with:

p(ν |x\t, µ0) ∝ p(ν |x, µ0)

p(t | ν, µ0)
, (4.8.5)

where t is the observed value of the statistic T = T (X) used to test H0, and the
notation x\t indicates that the information about ν contained in t is “removed” from
the posterior. It is straightforward to verify that the partial posterior-predictive p value
reduces to the prior-predictive one whenever T = X.

Substituting equation (4.8.2) into equation (4.8.4) and changing the order of inte-
gration yields:

ppost =

∫
dν p(ν |x, µ0)

∫ ∞

x

dxrep p(xrep |µ0, ν), (4.8.6)

showing that the posterior-predictive p value can be viewed as the average of the
classical p value over the posterior density. We will comment further on this alternative
representation of ppost in section 4.8.5.

10Such as posterior-predictive p values not going to zero as the observation becomes “infinitely”
extreme. Example 4.2 in Ref. [6] illustrates this effect which, it must be noted, strongly depends on
the choice of test statistic.
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4.8.1 Posterior prediction with noninformative priors

An interesting advantage of posterior prediction over prior prediction is that the for-
mer often yields proper predictive distributions even when noninformative, improper
priors are used. We illustrate this with our standard Poisson example. The likelihood
corresponding to an observation of n events is:

L(ν |n) =
νn e−ν

n!
, (4.8.7)

where the expected event rate ν is unknown. A natural noninformative prior for ν has
the form:

π(ν) ∝ νγ, ν > 0. (4.8.8)

The choice γ = 0 leads to a uniform prior, whereas γ = −1/2 corresponds to Jeffreys’
prior for this problem. The posterior is a gamma density:

p(ν |n) =
νn+γ e−ν

Γ(n+ γ + 1)
, (4.8.9)

and the posterior-predictive density is:

p(nrep |n) =

∫ ∞

0

dν
νnrep e−ν

nrep!

νn+γ e−ν

Γ(n+ γ + 1)
(4.8.10)

=
Γ(nrep + n+ γ + 1)

Γ(nrep + 1) Γ(n+ γ + 1)

(
1

2

)nrep+n+γ+1

. (4.8.11)

Depending on whether γ is integer or not, this is a negative binomial or Pascal distri-
bution. It is interesting to relate this result to a non-Bayesian technique known as the
maximum likelihood predictive density (MLPD).[65] The MLPD is defined as:

f̃p(nrep |n) = k(n) sup
ν

f(n, nrep | ν), (4.8.12)

where f(n, nrep | ν) is the joint distribution of n and nrep and k(n) is a normalization
factor. For f a Poisson density, one finds that the supremum is reached for ν̂ =
(n+ nrep)/2, so that:

f̃p(nrep |n) = k(n)
e−nrep

nrep!
(n+ nrep)

n+nrep

(
1

2

)nrep

. (4.8.13)

For large values of nrep this agrees with the posterior-predictive density (4.8.11) when
γ = −1/2, i.e. with Jeffreys’ prior.

The posterior-predictive density is a perfectly legitimate Bayesian distribution with
which to compute the probability of events. As already noted however, there is some
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controversy surrounding the double-use of data implied by the posterior-predictive p
value, which here is given by:

ppost ≡
∞∑

nrep=n

p(nrep |n) =
∞∑

nrep=n

Γ(nrep + n+ γ + 1)

Γ(nrep + 1) Γ(n+ γ + 1)

(
1

2

)nrep+n+γ+1

. (4.8.14)

Using the relationship between negative binomial and beta tail probabilities, this can
be rewritten in integral form:

ppost =
Γ(2n+ γ + 1)

Γ(n+ γ + 1) Γ(n)

∫ 1
2

0

dt tn−1 (1− t)n+γ. (4.8.15)

This representation is useful to obtain further simplifications for specific values of γ.
For example, if γ = −1, a simple symmetry argument shows that ppost = 1/2. If γ = 0,
a slightly more elaborate calculation yields:

ppost =
1

2

[
1 +

(2n− 1)!!

(2n)!!

]
∼=

1

2

[
1 +

√
4π n+ 1

2π n+ 1

]
, (4.8.16)

where the second expression on the right follows from applying Stirling’s formula to
the factorials and is fairly accurate for all n. These p values are rather trivially large,
illustrating the obvious fact that without prior information about ν it will not be
possible to falsify the null model.

4.8.2 Posterior prediction with informative priors

We now assume that we have a Gaussian prior for ν, as given by equation (4.1.4). After
canceling some constants between numerator and denominator, the posterior density
can be written as:

p(ν |n) =
νn e−ν− 1

2

(
ν−x0

∆ν

)2∫ ∞

0

dt tn e−t− 1
2

(
t−x0

∆ν

)2 , (4.8.17)

leading to the following posterior-predictive distribution:

p(nrep |n) =

∫ ∞

0

dν
νnrep e−ν

nrep!
p(ν |n). (4.8.18)

The posterior-predictive p value corresponding to an observation N = n0 is then:

ppost(n0) =
∞∑

nrep=n0

p(nrep |n0) =

∫ ∞

0

dν P (n0, ν) p(ν |n0), (4.8.19)

where the second equality holds only for n0 ≥ 1 and P (n0, ν) is the incomplete gamma
function with shape parameter n0 (as defined by equation (2.3.4)).
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Example 13 (X(3872) analysis, continued)
Table 11 shows the result of applying the posterior-predictive method to the X(3872)
analysis, for various assumptions about the uncertainty on the background estimate.
The posterior-predictive p values are quite significantly larger than the corresponding
prior-predictive ones. For example, ppost crosses the 5σ threshold at ∆ν ≈ 55, less than
half the corresponding ∆ν value for pprior. This is not surprising since ppost uses the
same observation both to test the null hypothesis and to help define it more sharply. It
is noteworthy however, that posterior-predictive p values are even larger than plug-in p
values (Table 5), suggesting that the former do not properly account for the uncertainty
on the nuisance parameter estimate.

∆ν ppost No. of σ

0 1.64× 10−29 11.28
10 5.27× 10−27 10.76
20 2.08× 10−21 9.50
40 2.93× 10−11 6.65
55 5.47× 10−7 5.01
60 4.79× 10−6 4.57
80 1.06× 10−3 3.27

100 1.35× 10−2 2.47
120 4.95× 10−2 1.96
140 1.02× 10−1 1.63

Table 11: Calculation of the posterior-predictive p value for the X(3872) analysis, for
several values of the uncertainty ∆ν on the background ν. We used x0 = 3234 and
n = 3893 in all calculations. For each p value we list the number of σ of a standard
normal density that enclose a total probability of 1− ppost.

4.8.3 Choice of test variable

As is true for most of the p value methods described in this note, it is possible to
calculate posterior-predictive p values for any choice of test statistic. The advantage
of posterior prediction however, is that it can also be applied to discrepancy variables,
which differ from test statistics in that they are allowed to depend on unknown pa-
rameters. It is often useful to test a model by directly comparing an estimate with
a prediction: the former is a function of the observations, whereas the latter depends
on the parameters. A discrepancy variable, by measuring the difference between these
two quantities, provides a good starting point for the calculation of a p value.

Consider for example the problem of comparing a binned experimental distribution
{xi}, i = 1, . . . , n, with a theoretical prediction {ti(θ)} that depends on one or more
unknown parameters θ. The standard frequentist procedure minimizes the discrepancy
D(~x, θ) ≡

∑
i(xi − ti(θ))

2/σ2
i with respect to θ at the observed value ~xobs of ~x, and
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refers the result to a χ2 distribution to calculate a p value. In contrast, the posterior-
predictive approach integrates the joint distribution of ~x and θ given ~xobs,

p(~x, θ | ~xobs) = p(~x | θ,H0) p(θ | ~xobs, H0), (4.8.20)

over all ~x and θ satisfying D(~x, θ) ≥ D(~xobs, θ). Note that this can not be done within
the prior-predictive approach because, once ~xobs is known, all information about θ is
carried by its posterior, not its prior. Discrepancy variables are also used by the fiducial
method of section 4.6. In that case however, the discrepancy variables must be pivotal
in order to eliminate nuisance parameters.

Reference [73] suggests using a conditional likelihood ratio (CLR) as discrepancy
variable. This is essentially a generalization of the above sum of squared deviations
variable. If the pdf of the data is p(x |µ, ν), with µ the parameter of interest and ν the
nuisance parameter, the CLR is defined as:11

DC(x, ν) ≡
supµ∈M0

p(x |µ, ν)
supµ 6∈M0

p(x |µ, ν)
, (4.8.21)

where M0 is the parameter space for µ under the null hypothesis. The term “condi-
tional” in CLR refers to a Bayesian conditioning on the value of ν.

For the problem of testing the mean µ of a Poisson signal process in the presence
of a Poisson background process with mean ν, the likelihood is:

L(µ, ν) =
(µ+ ν)n

n!
e−µ−ν ,

and for testing H0 : µ = 0 versus H1 : µ > 0, the CLR has the form:

− 2 lnDC(n, ν) =

{
−2n ln

ν

n
− 2 (n− ν) if n > ν,

0 if n ≤ ν.
(4.8.22)

The posterior-predictive p value based on this discrepancy variable and an observation
n0 is:

ppost,CLR(n0) =
∑
nrep

∫
dν

DC(nrep,ν) ≥ DC(n0,ν)

νnrep e−ν

nrep!
p(ν |n0), (4.8.23)

where p(ν |n), the posterior for ν, is given by (4.8.17). In terms of nrep and ν, the
region of summation/integration DC(nrep, ν) ≥ DC(n0, ν) maps out to

(nrep ≥ n0 and ν ≥ 0) or (nrep ≥ 0 and ν ≥ n0).

The summation and integration are then easy to perform, yielding:

ppost,CLR(n0) =

∫ n0

0

dν P (n0, ν) p(ν |n0) +

∫ +∞

n0

dν p(ν |n0). (4.8.24)

11For consistency with our definitions in section 4.3, the CLR defined here is actually the inverse of
that in reference [73].
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Since the incomplete gamma function P (n0, ν) is always less than one, comparison with
equation (4.8.19) shows immediately that ppost,CLR(n0) ≥ ppost(n0) in this particular
problem. For the X(3872) example there is hardly any difference between these two p
values, except at the very highest ∆ν values.

4.8.4 Null distribution of posterior-predictive p values

To check the frequentist uniformity of posterior-predictive p values under the null
hypothesis, the same techniques can be used as before, i.e. starting from equation
(4.1.5) and replacing the integration region with ppost(n, x0) ≤ α. Figures 22 and 23
show the result for several choices of the true event rate νtrue and the uncertainty ∆ν.
In all cases the observed number of events n0 is used as test statistic. At small values
of α the conservatism is much more dramatic than for prior-predictive p values. On
the other hand there is some mild liberalism at high values of νtrue and ∆ν, near α = 1
(bottom two plots of Figure 22). Using the CLR instead of n0 to compute posterior-
predictive p values would enhance their conservative behavior since ppost,CLR ≥ ppost.

It is also possible to check the average uniformity of posterior-predictive p values,
by calculating their null distribution over the prior-predictive ensemble:

IPrpp

(
ppost(N) ≤ α

)
=

∑
n

ppost(n)≤α

p(n),

with p(n) the prior-predictive distribution of equation (4.7.4). Since ppost(n) decreases
as n increases, there exists an integer nα such that:

ppost(n) ≤ α ⇔ n ≥ nα.

Therefore:

IPrpp

(
ppost(N) ≤ α

)
=

+∞∑
n=nα

p(n) = pprior(nα),

where the last equality is based on the definition of the prior-predictive p value, equation
(4.7.5). Figures 24 and 25 show some examples of this cumulative distribution, which
appears to be conservative for α < 1/2.

The rather extreme conservatism of posterior-predictive p values could easily cause
one to keep a null model that is wrong. Reference [57] therefore argues that posterior-
predictive p values should be recalibrated with respect to the prior-predictive distri-
bution. The authors propose the following corrected posterior-predictive p value when
X = xobs is observed:

pcpost(xobs) ≡ IPr
(
ppost(X) ≤ ppost(xobs)

)
, (4.8.25)

where the probability is calculated with respect to the prior-predictive distribution.
Because of the latter, one of the main advantages of posterior-predictive p values,
namely that they can be used with improper priors, is lost by this recalibration. The
other main advantage, that the more general discrepancy variables can be used instead
of test statistics, remains.
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4.8.5 Further comments on prior- versus posterior-predictive p values

We list here some further properties and suggestions for the use of predictive p val-
ues: [73]

Comment 1. The prior- and posterior-predictive approaches to the calculation of
p values can be understood in terms of the conditions under which one would re-
peat the experiment tomorrow. Under prior-predictive replication, the experiment
is repeated assuming that new values will occur for both the data and the parame-
ters. Under posterior-predictive replication, the experiment is repeated with the same
(unknown) values of the parameters that produced today’s data. Note that, unlike
posterior-predictive replication, prior-predictive replication is undefined for improper
prior distributions.

Comment 2. A look at equations (4.7.5) and (4.8.6) suggests an alternative in-
terpretation for predictive p values, namely as averages of the classical p value over
the nuisance prior or posterior, respectively. Within this interpretation one can also
calculate the standard deviation of a predictive p value, as a measure of the spread of
p due to lack of knowledge about the nuisance parameter(s). An upper bound on the
standard deviation is

√
p(1− p).

Comment 3. As already emphasized, an important advantage of posterior-predictive
over prior-predictive p values is that the former can be calculated for general discrep-
ancy variables as well as for test statistics.

Comment 4. Rather than simply reporting the p value, it may be more informative
to plot the observed value of the test statistic against the appropriate reference distri-
bution (i.e. prior-predictive or posterior-predictive). However, this is not possible if
a discrepancy variable D(x, θ) is used instead of a test statistic. In that case, it may
be useful to make a scatter plot of D(xobs, θ) versus D(xrep, θ), where xobs is fixed by
the observation and xrep and θ are drawn from the posterior-predictive distribution.
This can be done by Monte Carlo sampling: first draw θ from its posterior distribu-
tion, and then draw xrep from its pdf evaluated at the value of θ just drawn. The
fraction of points above the main diagonal in the scatter plot of discrepancies is the
posterior-predictive p value.

Comment 5. As the sample size goes to infinity, the posterior distribution will con-
centrate at the maximum likelihood estimate of the parameter(s), so that the posterior-
predictive distribution will essentially equal the pdf of the data, i.e. the frequentist
distribution commonly used to calculate a p value. In general, the posterior-predictive
p value is much more heavily influenced by the likelihood than by the prior, which
gives it a less naturally Bayesian interpretation than the prior-predictive p value.

4.9 Power comparisons and bias

The previous sections illustrated p value calculations with the specific example of a
Poisson observation with a Gaussian uncertainty on the mean. The main alternative
hypothesis of interest is a Poisson mean that is larger than expected. How likely are
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we to detect such a deviation if it is actually true? This clearly depends on the choice
of test statistic, but also on the method used to eliminate nuisance parameters. Figure
26 shows the power of p values, IPr(p ≤ α |H1), for four such methods: supremum,
adjusted plug-in, fiducial, and prior-predictive. The test level is set at α = 0.05 and
the power is plotted as a function of the strength of a hypothetical signal superim-
posed on the background ν. There is little difference between the supremum and the
fiducial method, neither of which is uniformly better than the other. For example, the
supremum method seems to dominate everywhere at small ∆ν values, but not at large
∆ν. Prior-predictive power is indistinguishable from fiducial power at small ∆ν, but
visibly smaller at large ∆ν.

The plots also demonstrate that none of the methods is biased, i.e. the probability
for rejecting the null hypothesis is always smallest when the latter is true.

4.10 Summary

We have studied seven methods for taking account of systematic uncertainties into p
value calculations; these are known as the conditioning, supremum, confidence inter-
val, bootstrap (plug-in and adjusted plug-in), fiducial, prior-predictive, and posterior-
predictive p values. We summarize our findings in this section.

Our first observation, based on the X(3872) example, is that all the p values studied
tend to increase as the uncertainty ∆ν on the rate of the Poisson process increases. This
satisfies our initial requirement that the probability for rejecting the null hypothesis
should decrease as less is known about that hypothesis.

The X(3872) example has also allowed us to study the asymptotic (i.e. large sample)
properties of p values. In this regard, it is quite remarkable that five of the methods
considered, namely the supremum, confidence interval, adjusted plug-in, fiducial, and
prior-predictive p values give essentially identical results. This gives one confidence in
the robustness of these techniques. It is also understood why the others differ: the
posterior-predictive and plug-in p values make double use of the data and are therefore
excessively conservative; as for the conditioning method, it is not general enough to be
directly applicable in this example.

The uniformity properties of p values are best studied away from the asymptotic
regime, where one tends to expect good behaviour anyway. We found quite a variation
in this respect among the methods. For the problem studied, fiducial p values are
remarkably near uniformity, and are followed closely by the adjusted plug-in, confidence
interval, and supremum methods. The adjusted plug-in displays some spotty but minor
liberalism, whereas confidence interval and supremum are too generously conservative
at large ∆ν. The prior-predictive p value is even more generous in its conservatism,
but perhaps not extremely so. On the other hand, the posterior-predictive and plug-in
p values do show disturbingly severe conservatism in some situations and can therefore
not be recommended without additional calibration. The confidence interval method
is by construction “infinitely conservative” for significance levels α lower than β, where
1 − β is the confidence level for the nuisance parameter interval. While it may seem



D
ra

ft
Ju

ne
13

,
20

07

90 4 INCORPORATING SYSTEMATIC UNCERTAINTIES

that this prevents one from reporting the true extent of the evidence contained in the
data, this method often yields more power than the supremum method from which it
is derived.

Current HEP usage is mostly based on the prior-predictive method. Although
not optimal, this method has the great advantage of generality and computational
tractability. As a way to recapitulate the methods studied, we show in Table 12 their
respective calculations of the p value for a Poisson observation of 17 events when
5.7±2.0 are expected. We leave it to the reader to decide whether a 3σ effect has been
detected.

Method Prior Test Statistic P Value No. of σ

Conditioning n/a N 6.75× 10−3 2.71
Supremum n/a λ 1.94× 10−3 3.10
Confidence interval n/a N −X 1.06× 10−2 2.55

n/a λ 1.83× 10−3 3.12
Plug-in n/a N 1.27× 10−2 2.49
Adjusted plug-in n/a N 1.83× 10−3 3.12
Fiducial n/a N 2.21× 10−3 3.06
Prior-predictive Gauss N 2.21× 10−3 3.06

Gamma N 3.45× 10−3 2.92
Log-normal N 4.34× 10−3 2.85
Gauss T (N) 2.21× 10−3 3.06

Posterior-predictive Gauss N 2.49× 10−2 2.24

Table 12: P values obtained from the methods investigated in this note for the case
of a Poisson observation of n = 17 events given an expected rate of x = 5.7 ± 2.0
events. For the conditioning method we used τ = 1.41 and m = 8 in the notation
of equation (4.2.1); this yields a maximum likelihood estimate of 5.7 ± 2.0 for ν. For
the prior-predictive method, T (N) is the statistic defined in equation (4.7.18). The λ
statistic is defined in equation (4.3.14). For the confidence interval method, a 6σ upper
limit was constructed for the nuisance parameter.

4.11 Software for calculating p values

The following fortran routines are available from the author. They compute Pois-
son p values, taking systematic uncertainties into account according to the methods
described earlier in this section.

1. pvallr.for
Incorporates systematic uncertainties with the supremum method, using the
−2 lnλ statistic defined in equation (4.3.14) and converting it into a p value by
calculating half the corresponding tail probability of a chisquared for one degree
of freedom.
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2. pvalci.for
Computes confidence interval p values based on equation (4.4.1).

3. pvalpi.for
Computes plug-in and adjusted plug-in p values according to equations (4.5.3)
and (4.5.7) respectively.

4. pvalgf.for
Computes fiducial p values based on equation (4.6.24).

5. pvalpp.for
Computes prior-predictive p values according to equation (4.7.8).

6. pvalpo.for
Computes posterior-predictive p values according to equation (4.8.19).

All these routines use the cern library.

5 Multiple testing

Multiple testing is not applied very often in particle physics, although there are def-
initely several areas where it could prove useful. One such area is the monitoring of
hundreds of thousands of electronic channels at the new LHC experiments. Another
area is the search for newly predicted particles in several channels simultaneously. Also
relevant are the multiple comparisons made by the Particle Data Group [43] to test
the validity of the standard model.

A simple and yet powerful technique to evaluate many tests simultaneously is pro-
vided by p value plots.[83] Suppose we are testing n null hypotheses, T0 of which are
true. Let Np be the number of p values that are greater than or equal to a given p. We
have then:

E(Np) ≈ T0 (1 − p) (5.0.1)

for p values that are not too small (and therefore likely to come from true null hy-
potheses). This suggests a plot of Np versus 1 − p. The left part of the plot will be
approximately linear, with the slope of the “best” straight line through the points be-
ing an estimate of the number of true null hypotheses. False hypotheses should yield
small p values, which will correspond to points above the line in the right part of the
plot.

We illustrate this technique using the results shown in Table 10.4 of the 2004 edition
of the Particle Data Group’s review of particle physics.[43] Only results that can be
considered as more or less independent are of interest; they are reproduced here in
Table 13, ordered by increasing discrepancy with predictions. The latter are derived
from the global best fit values MZ = 91.1874 ± 0.0021 GeV, MH = 113+56

−40 GeV,
Mt = 176.9±4.0 GeV, αs(MZ) = 0.1213±0.0018, and α̂(MZ)−1 = 127.906±0.019. As
a result, the experimental errors are somewhat correlated with the prediction errors,
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Quantity Measured Value Predicted Value Pull

1. gνe
V -0.040 ± 0.015 -0.0397 ± 0.0003 -0.02

2. gνe
A -0.507 ± 0.014 -0.5065 ± 0.0001 -0.04

3. QW (T l) -116.6 ± 3.7 -116.81 ± 0.04 0.06
4. Ac 0.670 ± 0.026 0.6678 ± 0.0005 0.08
5. MZ (GeV) 91.1876 ± 0.0021 91.1874 ± 0.0021 0.09
6. Mt (GeV) [CDF] 176.1 ± 7.4 176.9 ± 4.0 -0.11
7. Rc 0.172 ± 0.003 0.17233 ± 0.00005 -0.11

8. Γ(b→sγ)
Γ(b→Xeν)

0.00339 ± 0.00058 0.00323 ± 0.00009 0.28

9. Aµ 0.142 ± 0.015 0.1472 ± 0.0011 -0.35
10. As 0.895 ± 0.091 0.9357 ± 0.0001 -0.45
11. Ab 0.925 ± 0.020 0.9347 ± 0.0001 -0.49

12. A
(0,µ)
FB 0.0169 ± 0.0013 0.01626 ± 0.00025 0.49

13. A
(0,s)
FB 0.0976 ± 0.0114 0.1033 ± 0.0008 -0.50

14. MW (GeV) [LEP 2] 80.412 ± 0.042 80.390 ± 0.018 0.52
15. Ae [ang. distr. of τ pol.] 0.1498 ± 0.0049 0.1472 ± 0.0011 0.53
16. Rτ 20.764 ± 0.045 20.790 ± 0.018 -0.58
17. Mt (GeV) [DØ] 180.1 ± 5.4 176.9 ± 4.0 0.59
18. g2

R 0.03076 ± 0.00110 0.03007 ± 0.00003 0.63

19. A
(0,e)
FB 0.0145 ± 0.0025 0.01626 ± 0.00025 -0.70

20. Aτ [SLD] 0.136 ± 0.015 0.1472 ± 0.0011 -0.75

21. s̄2
`(A

(0,q)
FB ) 0.2324 ± 0.0012 0.23149 ± 0.00015 0.76

22. Aτ [total τ pol.] 0.1439 ± 0.0043 0.1472 ± 0.0011 -0.77
23. ΓZ (GeV) 2.4952 ± 0.0023 2.4972 ± 0.0012 -0.87

24. A
(0,c)
FB 0.0706 ± 0.0035 0.0738 ± 0.0006 -0.91

25. Rµ 20.785 ± 0.033 20.751 ± 0.012 1.03
26. QW (Cs) -72.69 ± 0.48 -73.19 ± 0.03 1.04
27. Re 20.804 ± 0.050 20.750 ± 0.012 1.08
28. MW (GeV) [UA2, CDF, DØ] 80.454 ± 0.059 80.390 ± 0.018 1.08
29. Rb 0.21638 ± 0.00066 0.21564 ± 0.00014 1.12
30. Ae [ALR lept. & pol.Bhabba] 0.1544 ± 0.0060 0.1472 ± 0.0011 1.20

31. A
(0,τ)
FB 0.0188 ± 0.0017 0.01626 ± 0.00025 1.49

32. 1
2
(gµ − 2− α

π
) 4510.64 ± 0.92 4509.13 ± 0.10 1.64

33. ττ (fs) 290.92 ± 0.55 291.83 ± 1.81 -1.65
34. σhad (nb) 41.541 ± 0.037 41.472 ± 0.009 1.86
35. Ae [ALR hadr.] 0.15138 ± 0.00216 0.1472 ± 0.0011 1.94

36. A
(0,b)
FB 0.0997 ± 0.0016 0.1032 ± 0.0008 -2.19

37. g2
L 0.30005 ± 0.00137 0.30397 ± 0.00023 -2.86

Table 13: Principal Z-pole and other observables, compared with standard model
predictions and ordered by increasing pull (from Table 10.4 in [43]).
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which complicates the calculation of pulls. For this example, the pulls only take the
experimental errors into account. Although such a table is useful, it does not provide
a clear view of the consistency, or lack of it, between measurement and theory. In
particular, one would like to assess the significance of the most discrepant measurement,
a 2.9σ effect. Figure 27 shows the p value plot made from the 37 comparisons in
the table. Each pull zi is converted into a p value pi by assuming a Gaussian error
distribution: pi = 1−erf(|zi|/

√
2). The dotted line on the plot is a straight line through

the origin and with a slope of 37, corresponding to all tested hypotheses being true.
The points oscillate above and below the line, but nevertheless follow it quite closely.
Oscillations in such a plot are due to the natural correlations between order statistics.
Additional correlations between the data points will cause further distortions, creating
more uncertainty in the interpretation of the plot. Overall, the electroweak results
shown here appear to be in excellent agreement with expectations.

In the remainder of this section we review techniques for combining independent
p values and examine a few other procedures that are interesting either because they
work with dependent p values or because of their power properties.

5.1 Combining independent p values

If the individual p values are independent, i.e. they are derived from test statistics
whose joint probability factorizes, then it is fairly straightforward to combine them,
although there is no unique way of doing this. The general idea is first to choose a rule
S(p1, p2, p3, . . .) for combining individual p values p1, p2, p3,. . . , and then to construct
a combined p value by calculating the tail probability corresponding to the observed
value of S. Some plausible combination rules are:

1. The product of p1, p2, p3,. . . (Fisher’s rule);

2. The smallest of p1, p2, p3,. . . (Tippett’s rule);

3. The average of p1, p2, p3,. . . ;

4. The largest of p1, p2, p3,. . .

This list is by no means exhaustive. To narrow down the options, there are some
properties of the combined p value that one might consider desirable. [52] For example:

1. If there is strong evidence against the null hypothesis in at least one channel,
then the combined p value should reflect that, by being small.

2. If none of the individual p values shows any evidence against the null hypothesis,
then the combined p value should not provide such evidence.

3. Combining p values should be associative: the combinations ((p1, p2), p3), ((p1, p3), p2),
(p1, (p2, p3)), and (p1, p2, p3) should all give the same result.
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These criteria are of course debatable. Now, it turns out that property 1 eliminates
rules 3 and 4 above. Property 2 is satisfied by all four p values derived from the above
rules. On the other hand, property 3, called evidential consistency by statisticians, is
satisfied by none and is therefore not very helpful. This leaves Tippett’s and Fisher’s
rules as reasonable candidates. Actually, it appears that Fisher’s rule has somewhat
more uniform sensitivity to alternative hypotheses of interest in most problems.

To calculate the combined p value corresponding to Fisher’s rule, there is a neat
mathematical trick one can use. First, note that the cumulative distribution of a
chisquared variate for two degrees of freedom is given by 1−e−x/2. Therefore, if p is an
exactly uniform p value, −2 ln p will be distributed as a chisquared with two degrees of
freedom. The next step is to remember that chisquared variates are additive: adding
k chisquared variates with two degrees of freedom yields a chisquared variate with
2k degrees of freedom. Hence the trick: to combine k p values by Fisher’s method,
take twice the negative logarithm of their product, and treat it as a chisquared for 2k
degrees of freedom.

For example, to combine two p values p1 and p2, one would refer −2 ln(p1p2) to a
chisquared distribution for four degrees of freedom. The density of such a chisquared
is xe−x/2/4, and the upper tail probability is (1 + x/2)e−x/2. Setting x = −2 ln(p1p2)
in the latter yields [1 − ln(p1p2)]p1p2. The general formula for an arbitrary number
of p values is derived similarly. It becomes a little bit more complicated because the
calculation of the tail probability of a chisquared with an arbitrary number of degrees
of freedom involves repeated integrations by parts. The result is:

P

n−1∑
j=0

[
− ln(P )

]j
j!

, (5.1.1)

where P is the product of the n individual p values.
The above result is only strictly valid if the individual p values are all derived from

continuous statistics. If one or more p values are discrete, then the formula will give a
combined p value that is larger than the correct one, and will therefore be conservative.
One can of course always correct for this by running Monte Carlo calculations.

5.2 Other procedures

A review of the abundant literature on combining p values can be found in Refer-
ence [26]. The problem of combining p values can be viewed as special case of multiple
testing. Some relevant references on the latter are [58, 85, 86, 88, 92].

6 A further look at likelihood ratio tests

As pointed out in section 4.3.1, the likelihood ratio statistic often provides a good start-
ing point for testing hypotheses. It is usually easier to compute than the score or Wald
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statistic, and, in contrast with the latter, is invariant under parameter transforma-
tions. A well-known theorem due to Wilks [98] states that the asymptotic distribution
of twice the log of the likelihood ratio statistic is chisquared. Wilk’s proof requires
that the likelihood function admit a second-order Taylor expansion, that the maxi-
mum likelihood estimate of the parameter of interest be asymptotically normal, and
that the observations be independent. Interestingly, this theorem can be generalized
in a way that provides a more geometric insight into its conditions. Indeed, Ref. [45]
shows that the requirement of asymptotic normality of the MLE can be dropped, and
that if the likelihood contours are fan-shaped, then the log-likelihood ratio statistic is
gamma-distributed. More precisely, assume that µ is a p-dimensional parameter and
that the contours of its likelihood can be approximated as:

Sw ≈ µ̂ + anw
r S, (6.0.1)

where w is the likelihood ratio value associated with contour Sw, µ̂ is the MLE of µ,
an is a sequence converging to zero as the sample size n increases, and S is a surface in
Rp. Then it can be shown that the log-likelihood ratio is distributed as Gamma(rp).

Example 14
Suppose we have a sample of n unstable particles with known decay constant δ and
wish to test the hypothesis that their production time τ is properly calibrated:

H0 : τ = τ0

The individual decay times are exponentially distributed:

T ∼ 1

δ
e−(t−τ)/δ ϑ(t− τ),

where ϑ(t− τ) is the usual step function. The likelihood can be written as:

L(τ) =
1

δn
en (τ−t̄)/δ

n∏
i=1

ϑ(ti − τ),

with t̄ being the average of the measured decay times. Due to the product of step
functions, the MLE of τ is immediately seen to be

τ̂ = min(t1, . . . , tn).

Note that n (τ̂ − τ) is not asymptotically normal. The log-likelihood ratio statistic is:

lnλ =
n

δ
(τ̂ − τ0) for τ̂ ≥ τ0.

In this simple example the likelihood contours are zero-dimensional:

Sw = {µ :
n

δ
(τ̂ − τ) = w ≥ 0} = τ̂ +

wδ

n
S,
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where the “surface” S consists of the single point {µ = −1}. Applying equation (6.0.1)
yields an = δ/n and r = 1, so that lnλ is asymptotically distributed as Gamma(1), i.e.
2 lnλ is asymptotically distributed as a χ2 with two degrees of freedom. Contrast this
with the standard, and in this case incorrect result that 2 lnλ should be distributed as
a χ2 with one degree of freedom, corresponding to the difference in number of fitted
parameters between numerator and denominator of the likelihood ratio.

Unfortunately the above generalization does not cover a number of non-standard
situations, such as when:

1. The null and alternative hypotheses are nonnested, i.e. the null hypothesis can-
not be considered as a special case of a more general model represented by the
alternative hypothesis;

2. Parameter values in the null hypothesis are on the boundary of the maintained
hypothesis (this is the union of the null and alternative hypotheses);

3. There are nuisance parameters that appear under the alternative hypothesis but
are undefined under the null.

The last two of these situations occur quite regularly in high energy physics. We have
already seen an example of the second one in section 4.3.3, where the parameter of
interest was zero under the null and positive under the alternative. As a result, the
distribution of the likelihood ratio statistic was 1

2
χ2

0 + 1
2
χ2

1 instead of simply χ2
1. In the

present section we concentrate on the third type of problematic situation.

6.1 Testing with weighted least-squares

Section 2.3 described a p value calculation for the observation of a signal peak, the
X(3872) resonance, on top of a smooth background spectrum. This calculation depends
on the choice of a window in which background and signal events are counted. In order
for the significance to be unbiased, the window must be chosen before looking at the
data [37], which requires that some information about the location and width of the
signal peak be known beforehand. This was in fact the case for the X(3872), since the
Belle collaboration had reported its observation before CDF. [25] If these parameters
are unknown, an alternative method is to base the significance calculation on how the
fit of the whole spectrum improves when a Gaussian component is added to model the
X(3872) signal. For a binned spectrum however, the bin width must still be chosen
independently of the data, which may be difficult without prior information about the
signal width. In this section we consider a binned spectrum and assume that the bin
width was set a priori. We introduce the delta-chisquared statistic and study what can
be said about its distribution under a minimal set of assumptions.

The problem of how a fit behaves under the addition of a signal component can
be formulated as a test of the hypothesis that one or more specific fit parameters are
zero. Consider a set of independent measurements yi of a function µ(x) at N different
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points xi, and assume that µ(x) depends on s unknown parameters pj, and that yi has
a Gaussian density with mean µi ≡ µ(xi) and known width σi. The likelihood function
is

L(p1, . . . , ps | y1, . . . , yN) =
N∏

i=1

e
− 1

2

“
yi−µi

σi

”2

√
2πσi

=
e−

1
2
X2

(2π)N/2
∏N

i=1 σi

, (6.1.1)

where X2 is the sum of squares:

X2 ≡
N∑

i=1

(
yi − µi

σi

)2

. (6.1.2)

Suppose now that we are interested in testing the null hypothesis:

H0 : pr+1 = pr+2 = . . . = ps = 0 (6.1.3)

for some r between 0 and s− 1, versus the alternative:

H1 : pi 6= 0 for at least one i ∈ {r + 1, . . . , s}. (6.1.4)

The likelihood ratio statistic for this problem is given by:

λ(y1, . . . , yN) =

sup L(p1, . . . , ps | y1, . . . , yN)
{p1,...,pr} pr+1=...=ps=0

sup L(p1, . . . , ps | y1, . . . , yN)
{p1,...,ps}

= e−
1
2
δX2

, (6.1.5)

where δX2 is the difference between the sum of squares minimized under H0 and the
unrestricted minimized sum of squares:

δX2 = min X2
∣∣
H0

− minX2. (6.1.6)

A test based on the likelihood ratio statistic can therefore be reformulated as a test
based on the “delta-chisquared” statistic.12 In order to calculate p values, we need
the distribution of δX2 under the null hypothesis. Although the fit presented in Ref-
erence [2] involves both linear and non-linear components, the result we will be using
requires that µ(x) be linear in the parameters pj. Our strategy here is to first gain
some insight by starting from a linear regression model, and then to study the effect
of violating various assumptions of this model. We show in appendix B that

If: (a) the function µ(x) is linear in the parameters pj;
(b) the yi are mutually independent;
(c) the yi are Gaussian with mean µi and width σi;
(d) the σi do not depend on the pj;

(6.1.7)

Then: under H0, δX
2 has a chisquared distribution with s− r degrees of freedom.

12It is sometimes suggested that an F test be used to determine whether a given parametrization
needs an additional component. [81] In fact, the F test is the likelihood ratio test for least-squares
fitting problems where the measurements yi all have the same unknown variance σ2. [94] One must
then estimate σ in addition to the regression coefficients pj . This is clearly not the case of the X(3872)
analysis. Of course, one could still use the F test here, but it would not have as much power as the
δX2 test, since the latter is equivalent to the likelihood ratio test.
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We illustrate this theorem with the problem of fitting a 70-bin histogram that is
a random fluctuation of the quadratic polynomial spectrum used to model the back-
ground in Figure 1 of Reference [2] and reproduced here in Figure 28a. We wish to test
the null hypothesis that the spectrum is quadratic against the alternative that it has a
cubic and/or quartic component. To obtain the δX2 distribution we run the following
pseudo-experiment procedure a large number of times:

1. Generate a histogram by Gaussian fluctuations of the null hypothesis
spectrum;

2. Fit the generated histogram to a quadratic polynomial by minimizing
the sum of squares (6.1.2); call X2

1 the resulting minimum;

3. Fit the generated histogram to a quartic polynomial, and call X2
2 the

minimum sum of squares obtained here;

4. Histogram the difference δX2 ≡ X2
1 −X2

2 .

Note the somewhat unusual choice of Gaussian fluctuations in step 1: this is to satisfy
condition (6.1.7c). Figure 29 shows the result of 20,000 runs of the above procedure.
The chisquared distributions for the two fits agree fully with expectations: the first fit
has 70− 3 = 67 degrees of freedom and the second one 70− 5 = 65. Accordingly, the
δX2 distribution coincides nicely with a χ2 density for two degrees of freedom.

6.1.1 Exact and asymptotic pivotality

The reason that the above pseudo-experiment procedure works is that the δX2 statistic
is exactly pivotal for this problem, i.e. its distribution is independent of the values of
parameters that are not restricted by H0. Therefore, it does not matter that the
first step of the procedure does not specify numerical values for the coefficients of the
quadratic polynomial under H0: any choice will give the same result.

In practice it is relatively rare to encounter exact pivotality, except in the trivial
case where the null hypothesis is simple and fully specifies all the parameters in the
problem. The distribution of an exact pivot is either known analytically or can be
approximated unambiguously by a Monte Carlo calculation. When a test statistic
is not exactly pivotal in finite samples, it may still be so in the large sample limit
(asymptotic pivotality). One may then be able to use an asymptotic distribution to
approximate the finite sample distribution of the test statistic. Such a procedure is
then referred to as an asymptotic test.

Another approach to the treatment of asymptotic pivots, which also works for non-
pivotal statistics, is the bootstrap. Here one performs a Monte Carlo simulation of
the distribution of the test statistic under the null hypothesis, substituting consistent
estimates for the values of unknown parameters. [7] The resulting p value will not
be exact, since it is obtained from an estimated pdf rather than the true one. How-
ever, the difference between the bootstrap p value and the exact one goes to zero as
the sample size increases. Furthermore, it is in principle possible to improve on the
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bootstrap p value by a nested double-bootstrap algorithm such as the one described
in section 4.5.1. Of course, in most cases this improvement is not practically achiev-
able due to the enormous computational burden it imposes. For test statistics that
are merely asymptotically pivotal, it is generally believed that bootstrap tests perform
better than asymptotic ones. [31, section 4.6]

With respect to exact pivotality, the X(3872) analysis violates conditions (6.1.7a, c,
and d): its error structure is not Gaussian but Poisson, and its regression is non-linear
due to the use of a Gaussian to model the ψ(2S) peak on top of the quadratic back-
ground spectrum. However, as we illustrate in the next subsections, these violations
have little effect on the accuracy of tests based on the asymptotic pivotality of the δX2

statistic.

6.1.2 Effect of Poisson errors, using Neyman residuals

In a counting experiment without constraint on the total number of counts, histogram
bins obey Poisson statistics, so that the σi in equation (6.1.2) must be replaced by√
µi. However, when the µi depend on some unknown parameters pj that must be

determined by minimizing X2, this replacement can turn a nice linear problem into
a non-linear one, violating another of the conditions (6.1.7). A possible solution is to
replace σi by

√
yi instead. This is sometimes referred to as Neyman’s chisquared [14]:

X2 ≡
N∑

i=1

(yi − µi)
2

yi

. (6.1.8)

Figure 30 shows the result of running the previously described pseudo-experiment pro-
cedure, this time with Poisson fluctuations of the bin contents and using Neyman’s
chisquared to do the fits. There is good agreement with the expected chisquared dis-
tributions.

6.1.3 Effect of Poisson errors, using Pearson residuals

The effect of using Pearson’s chisquared:

X2 ≡
N∑

i=1

(yi − µi)
2

µi

. (6.1.9)

is shown in Figure 31. These plots are indistinguishable from those obtained for the
purely Gaussian case in Figure 29. This is not a surprise, as it is well known that,
asymptotically, Pearson’s chisquared converges faster than Neyman’s to an exact χ2

distribution [41]. According to our discussion in section 2.3.2, Neyman’s chisquared
corresponds to approximating a chisquared by a Gaussian in each bin, whereas Pear-
son’s chisquared corresponds to approximating a Poisson by a Gaussian in each bin.
In a regime where these approximations perform poorly, one could consider construct-
ing a chisquared from Wilson and Hilferty’s approximation (equation 2.3.12). For the
remainder of this study we will simply continue with Pearson’s chisquared.
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Since Pearson’s chisquared is based on a Gaussian approximation, it may not be
reliable for computing very small p values, even when the sample size is as large as that
of the X(3872) analysis. A plausible estimate of the accuracy of this calculation can
be obtained by some of the methods described in section 2.3. The Poisson probability
for an expected background of 3234 events to fluctuate up to 3893 observed events or
higher, corresponds to 11.28σ. With the Gaussian approximation one finds (3893 −
3234)/

√
3234 = 11.59σ. The difference of 0.3σ should be a good guess of the accuracy

of the fitter-based significance. There are however other sources of bias to consider, as
will be discussed in section 6.2.

6.1.4 Effect of a non-linear null hypothesis

The X(3872) analysis includes a Gaussian to model the ψ(2S) peak, which is part of
the background. We generated 20,000 pseudo-experiments from a spectrum consisting
of this peak on top of the usual quadratic background (see Figure 28b). The first fit
is then done to a Gaussian plus a quadratic (six parameters), and the second one to
a Gaussian plus a quartic (eight parameters). Figure 32 shows the resulting X2

min and
δX2 distributions. They all agree with expectations based on the linear regression
model.

6.2 Testing in the presence of nuisance parameters that are
undefined under the null

There is one more aspect of the X(3872) analysis that we haven’t tested, namely
the presence of a nonlinear component under the alternative hypothesis: a Gaus-
sian distribution to model the X(3872) peak itself. For this we used a set of 20,000
pseudo-experiments with a quadratic background spectrum (Figure 28a). Each pseudo-
experiment was first fit to a quadratic polynomial (H0) and then again to the sum of
a quadratic polynomial and a Gaussian resonance with a fixed width of 4.3 MeV/c2,
the presumed width of the X(3872) state (H1).

Figure 33 shows a large discrepancy between the X2 distribution under H1 and the
expected chisquared distribution. As a result, the δX2 statistic is no longer distributed
as χ2

2, a chisquared with two degrees of freedom. In fact, p values calculated using the
theoretical χ2

2 distribution would be seriously underestimated, causing the significance
to be overstated. What happened?

As shown in Appendix D, this problem can be traced back to the fact that when
the true amplitude of the signal resonance is zero (which is the null hypothesis), the
pdf of the data no longer depends on the mean of that resonance. On the other hand,
the fit still produces an estimate for that mean. However, this estimate is no longer
consistent, i.e. it does not tend to the true value as the sample size increases. This loss
of consistency is responsible for the breakdown of linearity in the asymptotic limit. In
the literature, the resonance mean is referred to as a nuisance parameter “that is only
present under the alternative,” or “that is undefined under the null.”
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In the next several sections, we discuss some valid methods for estimating the
significance in this case.

6.2.1 Lack-of-fit test

The first method is based on the observation that the distribution of the χ2 goodness-
of-fit statistic for the null hypothesis fit is still adequately described by its asymptotic
limit (Figure 33, top left). Thus one could still do a goodness-of-fit test on the observed
spectrum. The disadvantage of this approach is that it is sensitive to a wide range
of alternatives and much less powerful than the δX2 test at detecting the specific
alternative we are interested in. The p value obtained from a goodness-of-fit test is
therefore likely to underestimate the true significance of the observation.

A possible improvement on this method is described in Reference [49].

6.2.2 Finite-sample bootstrap test

A brute-force approach to the problem is to generate a large number of pseudo-
experiments from the null hypothesis model for the data, and to calculate the δX2

test statistic for each pseudo-experiment. The resulting distribution of δX2 can then
be used to evaluate the significance of the observed δX2 value. If the background
shape under the X(3872) signal was fully known, the δX2 statistic would be exactly
pivotal. Although its distribution would not be known in analytical form, it could still
be determined unambiguously by this Monte Carlo calculation. As it stands however,
the shape of the X(3872) background is not known and must be estimated from data.
One must therefore use the bootstrap method.

A major difficulty with this method is the calculation of the δX2 statistic for each
pseudo-experiment, which requires two fits, one under the null hypothesis and the
second under the alternative. The second fit can be particularly difficult because it
requires that one find the largest signal-like fluctuation among many local fluctuations
in a spectrum generated from the background-only hypothesis. In this situation, most
fitters (including CERN’s minuit) will only find the local maximum closest to the
starting point of the fit. The only way to locate the global maximum is to repeat the
fit at several points between the spectrum boundaries. Further details on this method
are provided in Appendix D.

A possible saving of CPU time can be obtained as follows. Let δX2
obs be the

δX2 value observed in the actual data. Any pseudo-experiment that is sufficiently
background-like to satisfy

X2
min|H0 < δX2

obs, (6.2.1)

also satisfies the following inequality on its δX2:

δX2 = X2
min|H0 − X2

min < δX2
obs − X2

min < δX2
obs,

and therefore does not contribute to the numerator of the bootstrap p value. Note
that we can figure this out without having to calculate the fit chisquared under the
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alternative hypothesis, hence the saving in CPU time. How substantial this saving is
depends on the difference in number of degrees of freedom between X2

min|H0 and δX2.
If it is large, inequality (6.2.1) is unlikely to obtain very often, and savings will be
minimal.

It should be clear by now that the bootstrap method can be computationally very
intensive and won’t provide answers in the region of the X(3872), where δX2

obs is of
order 100.

6.2.3 Asymptotic bootstrap test

A considerable simplification is achieved by working directly with the asymptotic ex-
pression for the δX2 statistic, for a fixed value of the mean θ of the X(3872) resonance.
This expression is derived in Appendix B:

δX2(θ) = [q̂4(θ)]
2 , (6.2.2)

where q̂4(θ) is a linear combination of Gaussian variates that represent asymptotic
approximations to the bin contents yi. Furthermore, q̂4(θ) is directly proportional to
the fitted amplitude of the X(3872) resonance at location θ. The great simplification
of this approach is that all the fit parameters have been eliminated, except for θ.

What we have done so far is to treat θ as a fit parameter, adjusting it to minimize
X2 under the alternative hypothesis, which assumes that the X(3872) amplitude is
positive. This is equivalent to maximizing δX2(θ) with respect to θ, effectively working
with the one-sided statistic:

δX2
sup(1s) =

[
max

(
sup

L≤θ≤U
q̂4(θ) , 0

)]2

, (6.2.3)

where L and U denote the boundaries of the fitted spectrum. On the other hand, if
there was some physics reason to allow negative X(3872) amplitudes, one could work
with the two-sided statistic:

δX2
sup(2s) = sup

L≤θ≤U
[q̂4(θ)]

2 . (6.2.4)

To illustrate the calculation of δX2
sup, we show in Figure 34(a) a random histogram of

yi generated from a quadratic spectrum, and in Figure 34(b) the corresponding q̂4(θ)
function. As expected, the variation of q̂4(θ) with θ tends to track fluctuations of the
yi above or below their expectations. It is clear that a local minimizer such as minuit
can not efficiently find the global maximum in equation (6.2.3) or (6.2.4). Fortunately,
since this is a one-dimensional, bounded problem, one can do a simple grid search by
stepping through 1001 equidistant points between L and U and using the largest of
the function values at these points. The result of this grid search is compared with the
finite-sample bootstrap method in Figure 35. There is good agreement between the
two methods for the X(3872) analysis.
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6.2.4 Analytical upper bounds

Reference [4] shows that hypothesis tests based on the supremum statistics of equations
(6.2.3) and (6.2.4) are optimal in a certain sense, whereas References [32, 33] provide
upper bounds on the null-hypothesis tail probabilities of these statistics. One such
upper bound, applicable to the X(3872) analysis, is:

IPr
{
δX2

sup(1s) > u
∣∣∣H0

}
≤ 1

2

[∫ +∞

u

e−x/2

√
2π x

dx +
K

π

∫ +∞

u

e−x/2

2
dx

]

=
1

2

[
1− erf

(√
u/2
)]

+
K

2π
e−u/2. (6.2.5)

The right-hand side is a linear combination of tail probabilities for chisquared distri-
butions with one and two degrees of freedom. In the second term, K is a constant that
depends on the range [L,U ] of the Gaussian mean θ:

K =

∫ U

L

√
Var

(
dq̂4
dθ

)
dθ. (6.2.6)

An expression for the variance appearing in the integrand is provided by equation
(B.0.40) in Appendix B. The integrand of equation (6.2.6) is shown as a function of
the integration variable θ in Figure 36(a). Integrating numerically from 3.65 to 4.00
yields K ≈ 60.98. The resulting upper bound of equation (6.2.5) is compared with a
finite-sample bootstrap calculation in Figure 36(b). For δX2

sup(1s) > 6, the upper bound
appears to turn into an excellent approximation of the bootstrap result, instilling some
confidence in its applicability to the X(3872) analysis.

For the actual X(3872) analysis it is probably sensible to exclude the vicinity of the
ψ(2S) peak from the range of plausible values for θ. Setting this range to [3.75 , 4.00]
GeV/c2, we find K ≈ 43.25. For Figure 2 in reference [2] the statistic δX2

sup(1s) is

approximately 107.6. Using equation (6.2.5), this corresponds to a (one-sided) tail
probability of 2.986 × 10−23, or 9.93σ. Had we used chisquared tables for one or
two degrees of freedom instead, we would have obtained significances of 10.44σ or
10.19σ, respectively. For this particular example, the difference is of the same order
as the accuracy of the Gaussian approximation to the Poisson derived in section 6.1.3.
Note however that the Gaussian approximation to the Poisson improves as the sample
size increases. Take for example two 10σ observations over predicted backgrounds of
respectively 4, 000 and 40, 000 events. In the first case, the Gaussian approximation to
the tail probability is too low by a factor of about 7.2. In the second case, with ten
times more statistics, the Gaussian approximation underestimates the correct result
by a factor of only 1.2, a clear improvement. On the other hand, no such improvement
occurs for the effect of nuisance parameters that are present under the alternative
hypothesis only. Consider equation (6.2.5), which applies to situations with one degree
of freedom and one nuisance parameter (in the X(3872) analysis, the amplitude and
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mean of the resonance, respectively). The ratio of the correct tail probability to that
of half a chisquared for two degrees of freedom is K/π at large values of u13, and K
does not go to zero for large sample sizes. For the X(3872) analysis, K/π is about 14.

6.2.5 Other test statistics

The approach discussed in the previous subsection consists in treating the location
parameter θ of the X(3872) resonance as a nuisance parameter which one must try to
“eliminate” in some way. The δX2

sup(1s) and δX2
sup(2s) statistics perform this elimination

by calculating a supremum. Other possibilities would be to average or integrate over
θ. This is investigated in Reference [3], which introduces the following statistics:

AveLR2s =

∫ U

L

dθ w(θ) δX2(θ), (6.2.7)

ExpLR2s = ln

∫ U

L

dθ w(θ) exp
[ 1

2
δX2(θ)

]
, (6.2.8)

where w(θ) is a weight function that depends on the problem at hand and should be
chosen to optimize power against alternatives of interest. These are two-sided statistics.
One-sided versions can be defined with the help of the step function ϑ(·):

AveLR1s =

∫ U

L

dθ w(θ) ϑ
[
q̂4(θ)

]
δX2(θ), (6.2.9)

ExpLR1s = ln

∫ U

L

dθ w(θ) ϑ
[
q̂4(θ)

]
exp
[ 1

2
δX2(θ)

]
. (6.2.10)

The distribution of these statistics underH0 orH1 can be computed with a finite-sample
or asymptotic bootstrap method. As was the case with the supremum statistics (6.2.3)
and (6.2.4), the asymptotic bootstrap is by far the easier method to program.

An obvious question at this point is which of the three statistics, ExpLR, AveLR,
and SupLR (≡ δX2

sup), one should use. One way to answer is by studying the power
of the corresponding tests in a problem such as the X(3872) analysis. This is shown
in Figures 37 and 38. The power functions of ExpLR and SupLR are essentially in-
distinguishable, whereas that of AveLR is intermediate between SupLR and a simple
goodness-of-fit test. All four power functions are of course lower than that of a likeli-
hood ratio test based on exact knowledge of the X(3872) location.

6.2.6 Other methods

The problem of testing when nuisance parameters are present only under the alterna-
tive has been extensively studied in the statistical literature. Some examples follow.

13To understand why we are comparing the correct tail probability to half a chisquared for two
degrees of freedom, remember that the statistic δX2

sup(1s) only takes into account positive amplitudes
of the X(3872) signal.
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Reference [95] uses the theory of Euler characteristics to generalize formula (6.2.5) to
more than one nuisance parameter. In [76], a score test is proposed, and an asymp-
totic approximation to its null distribution is derived using Hotelling’s volume-of-tube
formula. Reference [62] suggests a parameter transformation to remove the nuisance
parameter that is present only under the alternative and replace it by an additional re-
striction underH0. This changes the nature of the difficulty, making it sometimes easier
to solve, but not always. Finally, Reference [23] proposes an interesting directed-graph
method to break down an irregular testing problem into regular components.

6.3 Summary of δX2 study

A careless evaluation of the significance of the X(3872) observation would consist in
referring the observed δX2 value to a chisquared distribution for two degrees of freedom,
corresponding to the amplitude and mean of the signal resonance. One could argue
that the corrections due to the use of a Gaussian approximation to Poisson statistics
on the one hand, and to the presence of a nuisance parameter under the alternative
hypothesis only on the other, are very small compared to the estimated significance.
It should be noted though, that both corrections reduce the significance.

In general one will always need to be careful about the effects just discussed, and in
particular about the asymptotically irreducible effect of nuisance parameters that are
not identified under the null hypothesis. This often occurs with nonlinear models such
as those used to describe Gaussian resonances. If the mean and width of the resonance
are known, there is no problem since the amplitude is a linear parameter. If either
the mean or the width, or both, are unknown, then the correct distribution of the
test statistic must be determined by one of the special methods discussed previously.
Unfortunately most of these methods become very quickly intractable as the number
of nuisance parameters unidentified under H0 increases above 1.

6.4 A näıve formula

The Belle Collaboration [25] based the significance calculation of their own X(3872)
observation on the following formula:

“Number of sigma” =

√
−2 ln

(
L0

Lmax

)
, (6.4.1)

where L0 (Lmax) is the value of the likelihood maximized without (with) a signal com-
ponent in the fitted model. The right-hand side is essentially a transformed likelihood
ratio. If the signal component of the model only has one free parameter, and if all the
other assumptions of the relevant theorem are satisfied, then the distribution of twice
the negative log-likelihood ratio is that of a chisquared with one degree of freedom.
Taking the square root then yields the absolute value of a Gaussian variate with zero
mean and unit variance, hence the equality with the left-hand side.
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In the simplest version of the X(3872) analysis however, the signal resonance has two
free parameters, amplitude and mean, and estimators for the mean are not consistent
when the true value of the amplitude is zero. The theorem therefore does not apply.
Even if it did, the fact that there are two fit parameters for the signal makes equation
(6.4.1) only approximately valid. To illustrate this last point, we plot in figure 39
chisquared tail probabilities for one, two, three, and four degrees of freedom. On that
graph, a given tail probability p is expressed as the number of standard deviations of
a Gaussian density that enclose an area 1 − p around the mean. For example, what
appears to be a 5σ effect with the above formula is only 4.6σ, 4.3σ, and 4.1σ if the
actual number of degrees of freedom is 2, 3, and 4, respectively. However, the relative
accuracy of the approximation does increase with the observed value of the chisquared
variate.

7 Effect of testing on subsequent inference

Searches for new physics are typically done in one of two ways. If a theory predicts the
existence of a new particle, evidence for the latter can be obtained by testing whether
its production rate is zero or positive. However, new phenomena can also manifest
themselves by an extra contribution to a known, measurable quantity; one can then
test whether that quantity equals its standard model value or exhibits a deviation in
the direction predicted by the new physics. In both cases it is possible to identify a
(usually continuous) parameter µ, such that one is interested in testing, say, H0 : µ = 0
versus H1 : µ > 0. Furthermore, it is often useful to supplement the test result with a
range of µ values that are favored or disfavored by the data. A common procedure for
solving this problem is the following:

(1) Test the null hypothesis H0, say at the α0 = 5.7× 10−7 significance level (5σ);

(2a) If H0 is not rejected, report an α1 = 95% confidence level upper limit on µ;

(2b) If H0 is rejected, report an α2 = 68% confidence level two-sided interval for µ.

Notice that this procedure involves three independent confidence levels, α0, α1, and α2.
With the choice of α0 one seeks to establish a strong standard of discovery, as discussed
in section 2.2. When no discovery can be claimed, one is forced to keep working with
the null hypothesis µ = 0. To insist nevertheless on calculating an interval for µ would
seem superfluous, if not logically inconsistent. However, the failure to reject H0 does
not mean that the latter is true, since the experimental apparatus has finite sensitivity
and the data could exhibit a background-like fluctuation when signal is present. Hence
it is often useful to determine a range of values of µ that the experimental conditions,
together with the observations, do not really permit to “distinguish” from the null
value of µ. By definition this range includes the null value itself, which implies that
it must take the form of an upper or lower limit if the initial test is one-sided. Since
parameter values beyond the limit are considered “distinguishable” from the null value,
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and therefore excluded by the data, it is wise to choose a reasonably high confidence
level α1 for the limit. A popular choice is 95%, corresponding approximately to 2σ
in the tail of a Gaussian distribution. We emphasize here that the reported limit
should not just be an expected limit, but should include information contributed by
the observed data. Finally, if a discovery is claimed, it is important to quantify the
magnitude of µ that gave rise to the observation. Since the test indicates that µ may
indeed be different from zero, a two-sided interval is appropriate. Furthermore, we are
more interested in the values of µ inside the interval than in those outside, so that
interval should not be too large. This leads to the standard choice α2 = 68%.

Although the above procedure may seem to have rather sensible inferential goals, it
is a classic example of “flip-flopping,” in which a user decides what type of interval to
report based on the data. [46] This can be seen most directly from a plot of the coverage
that would result from such a procedure. Suppose that µ is the mean, assumed to
be positive or zero, of a Gaussian pdf with known width σ, and we have made one
observation x of µ. The critical region for rejecting the hypothesis that µ = 0 has the
form x ≥ nσ, with n being typically between 3 and 5. The overall coverage C(µ) is
then the sum of two components, one associated with the upper limit reported when
x < nσ and the other with the two-sided interval reported when x ≥ nσ (we assume
here that the two-sided interval is constructed with a central ordering rule):

C(µ) =
[
α1 − β(µ, n)

]
+

+ min

{
α2,

1

2

[
α2 + 2β(µ, n)− 1

]
+

}
, (7.0.2)

where [x]+ equals x when the latter is positive and zero otherwise, and β(µ, n) is the
power function of the test:

β(µ, n) =

∫ +∞

nσ

dx
e
−1

2

„
x−µ

σ

«2

√
2π σ

=
1

2

[
1 + erf

(µ− nσ√
2σ

)]
. (7.0.3)

The function C(µ) is plotted in Figure 40 for n = 5 and several values of α1 and α2.
The standard choice of α1, α2 is shown in plot (d). It is clear that the question of
correct coverage is ill-posed when α1 6= α2. On the other hand, when α1 = α2 there
is a region of parameter values for which the procedure undercovers. Note also that
undercoverage almost always occurs for µ = 0, since C(0) = [α1 − β(0, n)]+ < α1

whenever n ≥
√

2 erf−1(α2). However, this effect is negligible for large values of n.
Perhaps a more relevant way to investigate the coverage of our search procedure is

to condition on an appropriate subset of experimental results. In this approach, the
coverage of the upper limit is calculated within the subset of experiments that fail to
reject the null hypothesis, and the coverage of the two-sided interval is referred to the
subset of experiments that claim a discovery. For the example of a Gaussian pdf with
positive mean, the conditional coverage of the upper limit is:

C1s(µ) =
1

1 − β(µ, n)

[
α1 − β(µ, n)

]
+
, (7.0.4)
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and that of the two-sided interval is:

C2s(µ) =
1

β(µ, n)
min

{
α2,

1

2

[
α2 + 2β(µ, n)− 1

]
+

}
. (7.0.5)

These results are illustrated in Figure 41 for the case α1 = 0.95 and α2 = 0.68. The
coverage of the upper limit is optimal for small values of µ, where one expects most
observations to fall below the discovery threshold. The opposite is true for the two-sided
interval, which has good coverage at large values of µ. The coverage of each construction
fails dramatically in the region where the coverage of the other construction is optimal.

To overcome the lack of coverage of the above procedure, Ref. [46] advocates the
construction of intervals based on the likelihood ratio ordering rule. Such intervals
have exact coverage (at least in the continuous case) and evolve naturally from one-
sided to two-sided as the estimate of µ moves away from its null value. Unfortunately
there is only one degree of freedom in the choice of confidence levels: one has to take
α0 = α1 = α2. As argued above, this is incompatible with common desiderata and
leads either to intervals that are too wide or test levels that are too low. An alternative
method is to calculate conditional confidence intervals. We discuss this option in the
next section.

7.1 Conditional confidence intervals

Reference [72] elegantly summarizes the principle that should be followed when esti-
mation is performed after testing:

Most commonly, a test of hypothesis is a partition of the sample space into a critical
region and its complement. When estimation is performed only if the test datum is in
a particular element of that partition, that element is the sample space for estimation
purposes.

Since the second step of our search procedure is to calculate an upper limit or two-
sided interval depending on the test result, we apply the above principle separately to
each case. When no discovery is claimed, this means that the upper limit should be
constructed from the conditional pdf of the data, given that the observation fell outside
the critical region. We illustrate this again with the example of a Gaussian pdf with
known width σ and positive mean µ. Having made one observation x, we wish to test
H0 : µ = 0 versus H1 : µ > 0. The critical region is x ≥ nσ. The conditional density
of x, given x < nσ, is then:

f1(x) =
1

1− β(µ, n)

e
−1

2

„
x−µ

σ

«2

√
2π σ

θ(nσ − x), (7.1.1)

where θ(·) is the usual step function and β(µ, n) is the power function of the test,
given by equation (7.0.3). We use f1(x) in the standard Neyman construction of upper
limits. This yields an implicit equation for the α1 confidence level upper limit uα1 :

uα1 = x +
√

2σ erf−1
[
1 − 2

(
1− α1

) (
1− β(uα1 , n)

)]
, (7.1.2)
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which can easily be solved by numerical methods. Note that in the limit of large n
the search procedure always fails to reject, its power goes to zero, and one recovers
the usual formula for upper limits. This formula is also recovered when x decreases,
since this causes uα1 , and therefore β(uα1 , n), to decrease. The Neyman construction of
the conditional upper limit is shown in Figure 42, to the left of the dotted line (which
represents the 5σ discovery threshold). As the 5σ boundary is approached, the upper
limit diverges. This is the consequence of requiring coverage for large values of µ and
reflects the possibility that these fluctuate down, below the discovery threshold.

To construct a conditional two-sided interval on µ, given x ≥ nσ, we start from the
appropriate conditional pdf when a discovery is claimed:

f2(x) =
1

β(µ, n)

e
−1

2

„
x−µ

σ

«2

√
2π σ

θ(x− nσ). (7.1.3)

Applying the Neyman construction for a central two-sided interval [aα2 , bα2 ] with con-
fidence level α2 yields the following implicit equations:

aα2 = x −
√

2σ erf−1
[
1 − (1− α2) β(aα2 , n)

]
, (7.1.4a)

bα2 = x −
√

2σ erf−1
[
1 − (1 + α2) β(bα2 , n)

]
. (7.1.4b)

For large power, β → 1, or large x, these equations yield the standard formulae for
unconditional central confidence intervals. The Neyman construction of the conditional
interval is illustrated in Figure 42, to the right of the dotted 5σ boundary. As that
boundary is approached from the right, the two-sided interval turns into an upper limit.
This takes into account the possibility that fluctuations from small values of µ can lead
to discovery.

Since the conditional upper limit (7.1.2) and two-sided interval (7.1.4) were obtained
with Neyman’s construction, they cover exactly within their respective element of the
partition of sample space induced by the hypothesis test. It is also interesting to
look at the overall coverage of the conditional procedure; in other words, what is the
probability that µ will be contained in whatever interval is reported, regardless of
whether discovery is claimed or not? It is easy to see that the answer must be:

C?(µ) = α1

[
1 − β(µ, n)

]
+ α2 β(µ, n), (7.1.5)

since β(µ, n) is the probability of claiming discovery when µ is the true value. This
result should be compared with equation (7.0.2). In particular, if α1 = α2 ≡ α, we
obtain C?(µ) = α, in contrast with C(µ), which undercovers for some values of µ (see
plots (a) and (b) in Figure 40).

An occasional objection to the unconditional upper limit construction for the Gaus-
sian problem with positive mean is that for small x it yields a negative upper limit
and hence an empty interval. As can be seen from Figure 42, the same effect occurs
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for the conditional construction. Whether or not this is a problem depends on one’s
point of view. Small x values (i.e. large negative ones) are evidence against both the
null and alternative hypotheses, and may require a revision of the overall model for
the data. Alternatively, one might consider relaxing the confidence level of the upper
limit, for instance changing it from 95% to 99% or even higher. Another proposal
[46] is to replace the upper limit ordering rule by a likelihood ratio one. The result
of this replacement is shown in Figure 43. Although the upper limit is now nowhere
negative, it turns into a two-sided interval well before the discovery threshold, a direct
consequence of maintaining exact coverage near µ = 0. Unfortunately, as discussed at
the beginning of section 7, this behavior is incompatible with one’s inferential goals
when no discovery can be claimed.

7.2 Further considerations on the effect of testing

In the previous section we adopted a frequentist approach to hypothesis testing and in-
terval construction. It may seem that the considerations that led to the requirement of
conditional estimation would be irrelevant in a Bayesian approach, which by definition
conditions fully on the observations. This reasoning is not always applicable however.
The type of search procedure we discussed involves a parameter of interest µ about
which hardly anything is known a priori. A Bayesian analysis would therefore typically
be based on a noninformative prior for µ, and the performance of the method would
have to be judged, inter alia, by its frequentist properties. Thus one would again be
forced to introduce an appropriate reference ensemble of experiments.

A fundamental characteristic of Bayesian inference is that experimental outcomes
not actually observed are irrelevant. The prior probability distribution is simply up-
dated on the basis of the information received. Nevertheless, subtleties may arise in
testing procedures where the outcome of the test determines what data are reported.
In those cases it may be necessary to model the data reporting process along with the
data generating process in the construction of the likelihood function. How and when
this needs to be done is discussed in Reference [35].

In contrast with the example discussed in the previous section, the effect of testing
on inference may become relevant at a much earlier stage of the analysis, for instance
when modeling the shape of a background spectrum. This is often done by least-
squares regression, without knowing a priori the type and number of regressors that
are present in the true model. To resolve this problem, some kind of stepwise procedure
is used, whereby higher-order regressors are added until an acceptable goodness-of-fit
is obtained. The regression coefficients themselves are subsequently estimated as if the
model was fully known a priori, without taking into account the uncertainty due to the
model selection step. This leads to bias in point estimates and undercoverage in interval
estimates of these coefficients. As explained in Reference [63], asymptotic approxima-
tions are usually not reliable in this case, and cannot even be helped by bootstrap
methods. The basic problem is that even if one has a consistent estimate of a given re-
gression coefficient, that estimate does not converge uniformly to its asymptotic limit,
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and its properties depend strongly on the unknown true values of other coefficients.
This is still a topic of ongoing research within the statistical community. [56]
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Appendix

A Laplace approximations

In this appendix we derive equation (4.7.23) in section 4.7.4, from which the Laplace
approximation to the prior-predictive p value is obtained.

The Laplace approximation applies to integrals of the form∫ b

a

g(x) et h(x) dx (A.0.1)

where:

• g and h are twice continuously differentiable in ]a, b[;

•
∫ b

a
|g(x)| exp(h(x)) dx exists;

• h reaches a single maximum in c ∈ ]a, b[, and c is the only point where h′ changes
sign;

• g(c) 6= 0.

Then, for t in the vicinity of +∞ (see any advanced calculus book, for example [39,
pg. 125]): ∫ b

a

g(x) et h(x) dx ∼

√
2π

−t h′′(c)
g(c) et h(c). (A.0.2)

We wish to apply this theorem to the following integral:

I =

∫ +∞

0

νn e−ν

n!
K e−

1
2(

ν−ν0
∆ν )

2

dν, (A.0.3)

where

K =

{√
2π∆ν

1

2

[
1 + erf

(
ν0√
2∆ν

)]}−1

. (A.0.4)

To make the theorem applicable, we identify the parameter t in (A.0.2) with 1/∆ν2.
Our approximation will therefore be valid in the limit ∆ν → 0. A naive application of
the theorem yields:

I ∼ νn
0 e

−ν0

n!
, (A.0.5)

which is not very useful. To improve on this, note that by reexpressing K as a Gaussian
integral, I can be written as a ratio of integrals:

I =

∫∞
0
e−

1
2(

ν−ν0
∆ν )

2
νn e−ν

n!
dν∫∞

0
e−

1
2(

ν−ν0
∆ν )

2

dν
. (A.0.6)
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The next idea [96] is to apply the Laplace method separately to the entirety of the
numerator and to the denominator of equation (A.0.6), so that common error terms
will cancel in the ratio. Accordingly, for the numerator we identify the function h of
the theorem with:

hnum.(ν) = −1

2
(ν − ν0)

2 − ∆ν2 (ν − n ln ν + lnn!). (A.0.7)

Although this function does depend on t ≡ 1/∆ν2, this dependence does not have
a detrimental effect on the final result as long as ∆ν and n are not too large. The
function hnum. reaches its maximum at:

ν̂n =
ν0 −∆ν2

2
+

√(
ν0 −∆ν2

2

)2

+ n∆ν2, (A.0.8)

and its second derivative at the maximum is:

h′′num.(ν̂n) = −1 − n

(
∆ν

ν̂n

)2

. (A.0.9)

For the denominator, we have:

hden.(ν) = −1

2
(ν − ν0)

2. (A.0.10)

This function reaches its maximum at ν0, and h′′den.(ν0) = −1. We are now ready to
compute the improved Laplace approximation to I:

I ∼
√
−2π/h′′num.(ν̂n) ehnum.(ν̂n)/∆ν2√
−2π/h′′den.(ν0) ehden.(ν0)/∆ν2

∼ e−
1
2(

ν̂n−ν0
∆ν )

2√
(ν̂n)2 + n∆ν2

(ν̂n)n+1 e−ν̂n

n!
. (A.0.11)

This is equation (4.7.23), as promised.

B Asymptotic distribution of the δX2 statistic

Section 6 relies on a result about the asymptotic distribution of the δX2 statistic. We
restate and prove this result here. A byproduct of the proof is a closed expression for
the asymptotic limit of the likelihood ratio statistic, which is used in the example that
follows the proof.

Theorem:

Consider N observations (xi, yi), where the xi are known, fixed constants and
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the yi are independent measurements that are normally distributed with means
µi ≡ µ(xi) and widths σi. Assume that µ(x) depends linearly on s unknown
parameters pj:

µ(x) =
s∑

j=1

pj fj(x), (B.0.12)

and that the σi are known constants (independent of x and pj). For some r
between 0 and s− 1 consider testing

H0 : pr+1 = pr+2 = . . . = ps = 0 (B.0.13)

versus
H1 : pj 6= 0 for at least one j ∈ [r + 1, s], (B.0.14)

using the delta-chisquared:

δX2 ≡ min
p1,..., pr

X2
∣∣
H0

− min
p1,..., ps

X2, (B.0.15)

where:

X2 ≡
N∑

i=1

(
yi − µi

σi

)2

. (B.0.16)

Then, the distribution of δX2 under H0 is that of a chisquared with s− r degrees
of freedom.

Proof:

Start by defining a scalar product for arbitrary functions f1, f2 with support {x1, . . . , xN}:

〈f1|f2〉 ≡
N∑

i=1

f1(xi) f2(xi)

σ2
i

, (B.0.17)

and orthonormalize the functions fj(x) used in the definition of µ(x). This can be done
by the standard recursive Gram-Schmidt algorithm:

gi(x) =



f1(x)√
〈f1|f1〉

for i = 1,

fi(x) −
∑i−1

j=1 〈gj|fi〉 gj(x)√
〈fi|fi〉 −

∑i−1
j=1 〈gj|fi〉2

for i = 2, 3, . . .

(B.0.18)

Since the gi(x) are linear combinations of the fi(x), we can rewrite µ(x) as:

µ(x) =
s∑

j=1

pj fj(x) =
s∑

j=1

qj gj(x), (B.0.19)
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from which expressions for the coefficients qj as linear combinations of the pj can
be derived. According to equation (B.0.18), each gj(x) only depends on fk(x) with
k ≤ j. Therefore each pk only depends on qj with j ≥ k, so that the null hypothesis is
equivalent to:

H0 : qr+1 = qr+2 = . . . = qs = 0. (B.0.20)

Using the scalar product notation (B.0.17), and expanding µ(x) in terms of the gj, the
X2 of equation (B.0.16) can be written as:

X2 = 〈y | y〉 + 〈µ |µ〉 − 2 〈y |µ〉 = 〈y | y〉 +
s∑

j=1

q 2
j − 2

s∑
j=1

qj 〈y | gj〉, (B.0.21)

where we used the orthonormality of the gj to expand 〈µ |µ〉. To minimize this X2 we
set ∂X2/∂qj = 0, obtaining:

q̂j = 〈y | gj〉 =
N∑

i=1

yi gj(xi)

σ2
i

. (B.0.22)

Substituting this solution in the expression for X2 yields:

X2
min =

N∑
i=1

(
yi

σi

)2

−
s∑

j=1

q̂ 2
j . (B.0.23)

Under H0 we only need estimators for q1, . . . , qr, since the rest are zero, by (B.0.20).
Therefore:

X2
min

∣∣
H0

=
N∑

i=1

(
yi

σi

)2

−
r∑

j=1

q̂ 2
j , (B.0.24)

and:

δX2 = X2
min

∣∣
H0

− X2
min =

s∑
j=r+1

q̂ 2
j . (B.0.25)

Finally, note that, by orthonormality of the gj(x), the q̂j have unit variances:

Var(q̂j) = Var

[
N∑

i=1

yigj(xi)

σ2
i

]
=

N∑
i=1

[
gj(xi)

σ2
i

]2

Var(yi)

=
N∑

i=1

[gj(xi)]
2

σ2
i

= 〈gj | gj〉 = 1, (B.0.26)

and are unbiased estimators of the qj:

E(q̂j) =
N∑

i=1

gj(xi)

σ2
i

E(yi) =
N∑

i=1

gj(xi)

σ2
i

µ(xi) =
N∑

i=1

gj(xi)

σ2
i

s∑
k=1

qkgk(xi)

=
s∑

k=1

qk

N∑
i=1

gj(xi) gk(xi)

σ2
i

=
s∑

k=1

qk 〈gj | gk〉 = qj, (B.0.27)
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so that under H0 (see equation (B.0.20))

E(q̂j) = 0 for j ∈ [r + 1, s]. (B.0.28)

This shows that, under H0, δX
2 in equation (B.0.25) is a sum of squares of s − r

standardized normal variates and is therefore distributed as a chisquared with s − r
degrees of freedom. Under H1, δX

2 is distributed as a noncentral chisquared with s−r
degrees of freedom and noncentrality parameter

∑s
j=r+1 q

2
j . �

We illustrate this theorem by calculating the large-sample limit of the likelihood
ratio statistic for the X(3872) analysis. Ignoring the ψ(2S) peak, the background is
parametrized as a second-degree polynomial and the X(3872) signal as a Gaussian. We
assume here that the location and width of this Gaussian are known. Hence we set:

f1(x) = 1,

f2(x) = x,

f3(x) = x2,

f4(x) =
e
− 1

2

“
x−θ

τ

”2

√
2π τ

.

Note that for the proof of the theorem to work, and hence for the likelihood ratio
statistic to be correctly constructed, the functions fi must be ordered in such a way
that the signal to be tested comes last. After orthonormalization of the first three
functions we find:

g1(x) = σ̄,

g2(x) =
x− x̄
√
m2

σ̄,

g3(x) =
(x− x̄) (x− x̄−m3/m2) − m2√

m4 − m2
3/m2 − m2

2

σ̄,

where

σ̄ =

[
N∑

i=1

1

σ2
i

]− 1
2

,

x̄ = σ̄2

N∑
i=1

xi

σ2
i

,

mk = σ̄2

N∑
i=1

(xi − x̄)k

σ2
i

.
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The expression for g4(x) is cumbersome but will not be needed explicitly in the follow-
ing. According to equation (B.0.25), the likelihood ratio statistic is given by:

δX2 = q̂ 2
4 , (B.0.29)

with:

q̂4 =
N∑

i=1

yi g4(xi)

σ2
i

. (B.0.30)

By introducing the matrix

Mij =
1

σ2
i σ

2
j

[
δijσ

2
j − g1(xi) g1(xj) − g2(xi) g2(xj) − g3(xi) g3(xj)

]
, (B.0.31)

q̂4 can be rewritten as:

q̂4 =
1√
C

N∑
i,j=1

Mij f4(xi) yj, (B.0.32)

where:

C =
N∑

i,j=1

Mij f4(xi) f4(xj). (B.0.33)

The matrix Mij has some useful properties:

N∑
i,j=1

Mij f4(xi) fk(xj) = C δ4k, (B.0.34)

N∑
i,j=1

Mij fk(xi) gl(xj) =
√
C δ4k δ4l, (B.0.35)

N∑
j=1

σ2
j Mij Mjk = Mik, (B.0.36)

N∑
i,j=1

Mij yi yj = X2
min

∣∣
H0
. (B.0.37)

The first two of these relations allow one to obtain a simple interpretation of expression
(B.0.29) for the δX2 statistic. First note that the fitted estimates of the qj and pj

parameters are related via equation (B.0.19):

µ̂(xj) =
4∑

k=1

q̂k gk(xj) =
4∑

k=1

p̂k fk(xj). (B.0.38)

Multiplying the two expressions on the right-hand side by Mijf4(xi) and summing over
i and j yields, by equations (B.0.34) and (B.0.35):

q̂4 =
√
C p̂4. (B.0.39)
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For the X(3872) analysis this leads to the interpretation of δX2 as being asymptotically
proportional to the square of the fitted amplitude of the Gaussian signal. We have
assumed in this derivation that both the mean θ and width τ of the Gaussian resonance
are known, but this is not usually the case. Since θ and τ are undefined under the
background-only hypothesis, not knowing them creates special difficulties which, as
shown in section 6.2, can only be solved by taking into account the dependence of q̂4
on these parameters. An example of the dependence of q̂4 on θ is shown in Figure 34(b).

Often the true resonance width can be assumed to be much smaller than the mea-
surement resolution, in which case τ is to a good approximation equal to the latter.
It is therefore useful to solve the significance problem for the case where only θ is un-
known. As shown in section 6.2, this requires the calculation of the variance of dq̂4/dθ.
We give the result here:

Var

[
dq̂4
dθ

]
=

1

τ 4C

N∑
i,j=1

Mij f4(xi) f4(xj) (xi − λ) (xj − λ), (B.0.40)

with

λ = θ +
1

C

N∑
i=1

1

σ2
i

(xi − θ)
[
f4(xi)

]2
.

C Orthogonal polynomials for linear fits

Section 6 describes several types of fits of a histogram to a polynomial model. When the
degree of the polynomial is higher than 2 and the fit parameters are naively identified
with the coefficients of monomials xi, the fit often fails due to high correlations between
the fit parameters. This can be avoided by using orthogonal polynomials. We briefly
review this method here.

Our goal is to minimize the sum of squares:

X2 ≡
N∑

i=1

(
yi − µi

σi

)2

, (C.0.41)

where the expected bin content µi is a linear combination of polynomials integrated
over bin i:

µi =

∫ bi

ai

[
m∑

j=0

cj pj(x)

]
dx. (C.0.42)

In this expression, ai and bi are the boundaries of bin i, pj(x) is a polynomial of degree
j in x, and the cj are fit parameters. To find the cj values that minimize X2, we need
the gradient:

∂X2

∂cj
= −2

N∑
i=1

yi − µi

σ2
i

∂µi

∂cj
= −2

N∑
i=1

yi − µi

σ2
i

∫ bi

ai

pj(x) dx. (C.0.43)
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Equating this expression to zero, expanding µi in terms of the pj, and rearranging
terms leads to the following equation for the estimators ĉk of the ck:

m∑
k=0

ĉk 〈pk | pj〉 =
N∑

i=1

yi

σ2
i

∫ bi

ai

pj(x) dx, (C.0.44)

where the scalar product 〈pk | pj〉 is defined by:

〈pk | pj〉 ≡
N∑

i=1

1

σ2
i

[∫ bi

ai

pk(x) dx

] [∫ bi

ai

pj(x) dx

]
. (C.0.45)

With some further algebraic manipulations, one finds that the covariance matrix of the
ĉk is equal to the inverse of the matrix of the 〈pk | pj〉. Therefore, the fit will work best
if we choose polynomials that are orthogonal for the scalar product (C.0.45). If the
bins are not too wide, this scalar product can be replaced with the approximation:

〈pk | pj〉 ∼=
N∑

i=1

pk(xi) pj(xi)

(σi/h)2
, where xi ≡

ai + bi
2

and h ≡ bi − ai. (C.0.46)

Forsythe [47] has provided a three-term recurrence formula for generating polynomials
that are orthogonal with respect to (C.0.46)14:

p0(x) = 1,

p1(x) = x − 〈x p0 | p0〉
〈p0 | p0〉

p0(x),

pj+1(x) =

[
x − 〈x pj | pj〉

〈pj | pj〉

]
pj(x) −

[
〈pj | pj〉

〈pj−1 | pj−1〉

]
pj−1(x).

(C.0.47)

When Pearson’s chisquared is used instead of (C.0.41), the gradient of X2 is no
longer given by (C.0.43) due to the presence of µi instead of σ2

i in the denominators of
(C.0.41). In this case, Forsythe’s polynomials no longer provide exact cancellation of
the correlations between the fit parameters. Nevertheless, the improvement in terms
of speed of convergence of the fitter is still considerable. A similar comment applies to
the case where a non-polynomial component (e.g. a Gaussian resonance) is added to
the fitted model.

D Fitting a non-linear model

Sections 6.1.4 and 6.2 both describe fits of a mass spectrum to a non-linear model
consisting of a Gaussian resonance superimposed on a polynomial background. The

14Note that Forsythe’s polynomials are exactly orthogonal with respect to the scalar product
(C.0.46) but not with respect to (C.0.45). This is because orthogonality of these polynomials re-
quires equalities of the form 〈x pj | pk〉 = 〈pj |x pk〉, which are true for (C.0.46) but not for (C.0.45).
This effect is of course negligible insofar as (C.0.46) is a good approximation to (C.0.45).
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long-run behavior of these fits is radically different. In section 6.1.4, the Gaussian
resonance (the ψ(2S) peak) is present under both the null and alternative hypotheses,
and the associated test statistic is distributed as a chisquared with the same number
of degrees of freedom as would be expected if the model were linear (Figure 32, top
right). On the other hand, in section 6.2 the Gaussian resonance is absent under the
null hypothesis, and the distribution of the corresponding test statistic is very different
from that of a chisquared (Figure 33, top right). This appendix attempts to give some
insight into this phenomenon while at the same time providing details on the numerical
computations involved.

D.1 Asymptotic linearity and consistency

A general derivation of the asymptotic distribution of the goodness-of-fit statistic X2,
equation (6.1.2), can be found in [28, section 30.3]. When the N expected bin contents
µi are linear in the s parameters pj, X

2 has a chisquared distribution with N − s
degrees of freedom. To understand the conditions under which this result remains
asymptotically valid for non-linear parameter dependence, replace the µi(~p ) by a linear
approximation around the true value ~p 0 of ~p:

µ`.a.
i (~p ) = µi(~p

0) +
s∑

j=1

(
pj − p0

j

) ∂µi

∂pj

∣∣∣∣
~p 0

. (D.1.1)

For the distribution of X2 to remain asymptotically unchanged when µi is replaced by
µ`.a.

i , the higher-order terms ignored in the above expression must all tend to zero. It
is clear that this can only happen if the estimators of the pj asymptotically tend to the
true values p 0

j . This property is known as consistency.

D.2 Non-linear regression with consistent estimators

The only non-linear parameter in the fit of section 6.1.4 is the mean of the Gaussian
signal. Since the null hypothesis includes a prominent ψ(2S) peak, the true value of this
mean is well defined and it can be shown that the estimator obtained by minimizing
X2 is consistent. Since the dataset is large enough for the asymptotic approximation
to be valid, the distribution of X2 is a chisquared, as expected.

D.3 Non-linear regression with inconsistent estimators

For the fit of section 6.2, the null hypothesis, and therefore the pseudo-experiments
generated from it, do not contain a Gaussian signal peak. The true value of the
Gaussian amplitude is therefore zero, making the true value of the Gaussian mean
undefined. On the other hand, our fitting procedure does produce an estimator for that
mean, namely whatever value minimizes X2. It is clear, however, that this estimator
cannot be consistent. The distribution of X2 is therefore no longer a chisquared.
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The calculation of the exact distribution of X2 in this case is not trivial. The
width of the Gaussian (4.3 MeV/c2) is comparable to the bin width of the spectrum
(5.0 MeV/c2), making it likely that a local fluctuation anywhere in the spectrum will
provide a good fit to the Gaussian component of the model. The problem then is to
find that one fluctuation that gives the best fit, i.e. the lowest fit chisquared. This is a
notoriously difficult problem, since most fitters are only good at finding local minima;
minuit, the minimizer used in this note, is not an exception. To solve this problem,
we repeat the fit several times on the same spectrum, shifting the initial value of the
Gaussian mean by one bin width before each repetition, until the whole spectrum
has been covered. The fit yielding the smallest chisquared is then used to obtain the
parameters of the global minimum.

To check the performance of this method, we ran several sets of 20,000 pseudo-
experiments with different constraints on the parameters of the Gaussian component
of the fit model. Figure 44 shows what happens when each spectrum is only fit once,
with the initial value of the Gaussian mean arbitrarily set at the center point of the
spectrum. The fitted mean, shown in plot (a), tends to remain in the immediate
vicinity of the center point. The delta-chisquared distribution (i.e. the difference in
chisquareds between fits with and without the Gaussian), shown in plot (b), has an
excess in the δX2 = 0 bin, indicating fits that were not improved by the addition of
a Gaussian component. Plots (c) and (d) show the result of a more systematic search
for the global minimum, as described at the end of the previous paragraph. Each
of the 20,000 pseudo-experiment spectra was fit 70 times, each time constraining the
Gaussian mean within one single bin of the fitted spectrum, and then retaining the
global minimum. Plot (c) shows the distribution of the fitted mean, which is now
approximately uniform. The δX2 distribution, shown in plot (d), no longer has a peak
at zero.

The dashed lines in plots 44(b) and (d) are exact chisquared distributions for two
degrees of freedom. This is the distribution one would obtain if the fit was linear. In
reality we are fitting for both the amplitude and the mean of the Gaussian, and the fit
is only linear in the former.

In Figure 44 the amplitude of the Gaussian is always constrained to be positive.
Figure 45(a) shows the result of relaxing this condition. There are now about twice as
many opportunities to find a fluctuation that will match the Gaussian component of
the model. Accordingly, the fitted δX2 has shifted to the right. If we still allow negative
amplitudes, but restrict the search for the global minimum to half the spectrum, say
from 3.825 to 4.00, we obtain the δX2 distribution shown in plot (b). It is interesting
to note that plots 44(d) and 45(b) are very similar: in the former case the Gaussian
amplitude is constrained to be positive but the mean can vary over the whole spectrum;
in the latter case the amplitude can be negative but the mean is constrained to half the
spectrum; intuitively, the total number of “opportunities” to fit the Gaussian should
be approximately the same.

For figure 45(c), the Gaussian mean was constrained to lie in the bin [3.870, 3.875].
This is a rather strong constraint, and the resulting δX2 distribution is now very close
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to a chisquared with one degree of freedom (dotted line), corresponding to the one
linear parameter that is still completely free, the Gaussian amplitude. Finally, in plot
(d1) the Gaussian mean is forced to equal 3.8714 exactly; the δX2 distribution is now
exactly a chisquared for one degree of freedom. Plot (d2) is the same as (d1), except
that the amplitude of the Gaussian is required to be positive. The dotted line here is
half a chisquared for one degree of freedom.

Other aspects of the above example of non-linear regression with inconsistent esti-
mators are studied in references [40] and [38, section 4.2].
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Figures

Figure 1: Cumulative probability distribution of conditional p values under the null
hypothesis, IPr(pcond ≤ α |H0) as a function of α, for a Poisson process whose mean
ν is calibrated by an observation from a second Poisson process with mean τν (τ a
known constant). In all four plots the true value of ν is νtrue = 5.7, and τ = 1.425.
The top three plots show the cumulative probability for fixed values of the statistic
A, defined as the sum of the two observed Poisson counts. The bottom plot is the
overall, unconditional cumulative probability, which is a weighted sum of conditional
probabilities, including those shown in plots (a), (b), and (c). The dotted lines indicate
a uniform distribution, IPr(pcond ≤ α) = α.
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Figure 2: Solid lines: cumulative probability distribution of conditional p values under
the null hypothesis, IPr(pcond ≤ α |H0) as a function of α, for a Poisson process whose
mean ν is calibrated by an observation from a second Poisson process with mean
τν. The true value of the mean is νtrue = 5.7 in all four plots, but τ varies. The
values τ = 570, 25.8, 0.63, and 0.18 correspond to uncertainties on the estimate ν̂ of
ν of ∆ν̂ = 0.1, 0.47, 3.0, and 5.7 respectively. The dotted lines indicate a uniform
distribution, IPr(pcond ≤ α) = α.
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Figure 3: Solid lines: cumulative probability distribution of conditional p values under
the null hypothesis, IPr(pcond ≤ α |H0) as a function of α, for a Poisson process whose
mean ν is calibrated by an observation from a second Poisson process with mean
τν. The distribution is shown for four different values of the true mean νtrue and
calibration constant τ . These values were chosen to yield a constant uncertainty of
∆ν̂ = 0.47 on the estimate ν̂ of ν. The dotted lines indicate a uniform distribution,
IPr(pcond ≤ α) = α.
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Figure 4: Tail probability of the likelihood ratio statistic under the null hypothesis,
equation (4.3.18), as a function of the Poisson mean ν, for four different values of the
Gaussian uncertainty ∆ν. The cutoff constant c in the equation is here set equal to
−2 lnλ(nobs, xobs). For ∆ν = 0.1, 0.47, 3.0, and 5.7, this yields c = 5.25, 5.02, 2.11, and
0.91 respectively. The dashed lines indicate the asymptotic values (ν →∞) of the tail
probability.
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Figure 5: P value calculations based on the likelihood ratio of equation (4.3.18). The
solid curves show the p value as a function of the observed value of twice the negative
log-likelihood ratio, for four values of the true background νtrue: 0.2, 0.5, 1.0, and
2.0, and for a background uncertainty ∆ν = 0.47. The dashed lines represent the
asymptotic limit (half a chisquared with one degree of freedom, see text).
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Figure 6: Null hypothesis cumulative probability distribution of p values calculated
with the likelihood ratio method. The solid lines show the distribution for a true
background νtrue = 5.7, and for four values of the background uncertainty ∆ν: 0.1,
0.47, 3.0, and 5.7. Each curve was obtained from a run of 107 Monte Carlo pseudo-
experiments. The dotted lines represent a uniform distribution.
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Figure 7: Null hypothesis cumulative probability distribution of p values calculated
with the likelihood ratio method. The solid lines show the distribution for four values of
the true background νtrue: 0.2, 0.5, 1.0, and 2.0, and for a background uncertainty ∆ν =
0.47. Each curve was obtained from a run of 107 Monte Carlo pseudo-experiments. The
dotted lines represent a uniform distribution.
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Figure 8: Null hypothesis survivor functions of the likelihood ratio statistic when both
the primary and subsidiary measurements have Poisson pdf’s. The true value of the
primary Poisson mean is varied from 0.57 to 57.0, and the ratio τ of the subsidiary to
the primary mean is varied from 1 to 1000. The dashed lines indicate the asymptotic
survivor function, half a chisquared for one degree of freedom.
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Figure 9: Likelihood ratio tail probability versus background mean, when both the
primary and auxiliary measurements have Poisson likelihood functions. The number
of observed events is n = 10 in the primary experiment and m = 7 in the auxiliary
one. The ratio of auxiliary to primary background means is τ = 16.5. The dotted
line indicates the level of the supremum p value, whereas the dashed line marks the
asymptotic p value.
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Figure 10: Solid lines: cumulative probability distributions, under the null hypothesis,
of p values calculated with the confidence interval method. The true background νtrue

is set at 5.7, whereas the background uncertainty ∆ν is varied from 0.1 to 5.7. A 6σ
confidence upper limit on νtrue is used to calculate pβ (β = 1.97 × 10−9). Each solid
curve was obtained from a sample of 106 Monte Carlo experiments. The dashed lines
show the corresponding null distributions of supremum p values, and the dotted lines
represent uniform distributions.
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Figure 11: Solid lines: cumulative probability distributions, under the null hypothesis,
of p values calculated with the confidence interval method. The true background νtrue

is varied from 0.2 to 2.0, whereas the background uncertainty ∆ν is kept fixed at 0.47.
A 6σ confidence upper limit on νtrue is used to calculate pβ (β = 1.97 × 10−9). Each
solid curve was obtained from a sample of 106 Monte Carlo experiments. The dashed
lines show the corresponding null distributions of supremum p values, and the dotted
lines represent uniform distributions.
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Figure 12: Cumulative probability distribution, under the null hypothesis, of p values
calculated with the confidence interval method. In these two plots, the null distribution
is compared for two different confidence levels of the nuisance parameter interval: 6σ
or 1.97× 10−9 (solid curves), and 3σ or 2.70× 10−3 (dashed curves). The dotted lines
represent a uniform distribution. The test statistic used to calculate confidence interval
p values is the likelihood ratio λ (top plot), and the maximum likelihood estimate µ̂ of
the signal (bottom plot).
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Figure 13: Cumulative probability distributions of plug-in p values (dashed lines) and
adjusted plug-in p values (solid lines) under the null hypothesis, for a Poisson process
whose mean has a Gaussian uncertainty ∆ν. The true value of the mean is νtrue = 5.7
in all four plots, but ∆ν varies from 0.1 to 5.7. The dotted lines indicate a uniform
distribution, IPr(pplug ≤ α) = α.
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Figure 14: Cumulative probability distributions of plug-in p values (dashed lines) and
adjusted plug-in p values (solid lines) under the null hypothesis, for a Poisson process
whose mean has a Gaussian uncertainty ∆ν = 0.47. The distributions are shown
for four different values of the true mean νtrue. The dotted lines indicate a uniform
distribution, IPr(pplug ≤ α) = α.
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Figure 15: Solid lines: cumulative probability distribution of fiducial p values under the
null hypothesis, for a Poisson process whose mean is known with a Gaussian uncertainty
∆ν. The true value of the mean is νtrue = 5.7 in all four plots, but ∆ν varies from 0.1
to 5.7. The dotted lines represent a uniform distribution.
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Figure 16: Solid lines: cumulative probability distribution of fiducial p values under the
null hypothesis, for a Poisson process whose mean is known with a Gaussian uncertainty
∆ν = 0.47. The distribution is shown for four different values of the true mean νtrue.
The dotted lines indicate a uniform distribution.
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Figure 17: Solid lines: cumulative probability distribution of prior-predictive p values
under the null hypothesis, IPr(pprior ≤ α |H0) as a function of α, for a Poisson process
whose mean is known with an absolute Gaussian uncertainty ∆ν. The true value of
the mean is νtrue = 5.7 in all four plots, but ∆ν varies from 0.1 to 5.7. The dotted lines
indicate a uniform distribution, IPr(pprior ≤ α) = α.
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Figure 18: Solid lines: cumulative probability distribution of prior-predictive p values
under the null hypothesis, IPr(pprior ≤ α |H0) as a function of α, for a Poisson process
whose mean is known with an absolute Gaussian uncertainty ∆ν = 0.47. The distribu-
tion is shown for four different values of the true mean νtrue. The dotted lines indicate
a uniform distribution, IPr(pprior ≤ α) = α.
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Figure 19: Comparison of the truncated Gaussian, gamma, and log-normal prior den-
sities for the background in the X(3872) analysis. All three curves have the same mean
and width. Plot (a) emphasizes differences in the tails, whereas plot (b) emphasizes
differences around the maximum.
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Figure 20: Solid lines: cumulative probability distribution of prior-predictive p values
under the null hypothesis, IPr(pprior ≤ α |H0) as a function of α, for a Poisson process
whose mean is known with a relative Gaussian uncertainty δ. The true value of the
mean is νtrue = 5.7 in all four plots, but δ varies from 0.0175 to 1.0. The dotted lines
indicate a uniform distribution, IPr(pprior ≤ α) = α.
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Figure 21: Solid lines: cumulative probability distribution of prior-predictive p values
under the null hypothesis, IPr(pprior ≤ α |H0) as a function of α, for a Poisson process
whose mean is known with a relative Gaussian uncertainty δ. The product δ × νtrue

is constant in all four plots and equals 0.47. The dotted lines indicate a uniform
distribution, IPr(pprior ≤ α) = α.
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Figure 22: Solid lines: cumulative probability distribution of posterior-predictive p
values under the null hypothesis, IPr(ppost ≤ α |H0) as a function of α, for a Poisson
process whose mean is known with a Gaussian uncertainty ∆ν. The true value of the
mean is νtrue = 5.7 in all four plots, but ∆ν varies from 0.1 to 5.7. The dotted lines
indicate a uniform distribution, IPr(ppost ≤ α) = α.
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Figure 23: Solid lines: cumulative probability distribution of posterior-predictive p
values under the null hypothesis, IPr(ppost ≤ α |H0) as a function of α, for a Poisson
process whose mean is known with a Gaussian uncertainty ∆ν = 0.47. The distribution
is shown for four different values of the true mean νtrue. The dotted lines indicate a
uniform distribution, IPr(ppost ≤ α) = α.
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Figure 24: Solid lines: cumulative probability distribution of posterior-predictive p
values under the null hypothesis and with respect to the prior-predictive measure, i.e.
IPrpp(ppost ≤ α |H0) versus α, for a Poisson process with a Gaussian prior on the mean.
The mean of the prior is x0 = 5.7 in all four plots, and its width varies from 0.1 to 5.7.
The dotted lines indicate exact uniformity, IPrpp(ppost ≤ α) = α.
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Figure 25: Solid lines: cumulative probability distribution of posterior-predictive p
values under the null hypothesis and with respect to the prior-predictive measure, i.e.
IPrpp(ppost ≤ α |H0) versus α, for a Poisson process with a Gaussian prior on the mean.
The width of the prior is ∆ν = 0.47 in all four plots, and its mean varies from 0.2 to
2.0. The dotted lines indicate exact uniformity, IPrpp(ppost ≤ α) = α.
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Figure 26: Power of supremum (solid), adjusted plug-in (dashed), fiducial (dotted),
and prior-predictive (dot-dashed) p values for testing for the presence of a Poisson
signal on top of a Poisson background whose mean νtrue has a Gaussian uncertainty
∆ν. The power is calculated for a test level of α = 5% and is plotted as a function of
the true signal strength.
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Figure 27: P value plot of electroweak observables compared with standard model
predictions, as listed in the 2004 edition of the Particle Data Group’s review of particle
properties (Table 10.4). There are 37 data points, and the dotted line is a straight line
through the origin and with a slope of 37.
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Figure 28: Top: spectrum used to generate pseudo-experiments for figures 29, 30, 31,
and 33. Bottom: spectrum used to generate pseudo-experiments for figure 32.
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Figure 29: Chisquared distributions obtained from an ensemble of 20,000 pseudo-
experiments. In each experiment, a binned spectrum is generated by Gaussian fluc-
tuations from a fixed quadratic polynomial background. The generated spectrum is
then fitted to a quadratic polynomial (H0 fit, top left) and to a quartic polynomial
(H1 fit, top right). The chisquared difference between these two fits is shown in the
bottom plot. The pseudo-experiment distributions (solid histograms) are compared to
chisquared curves for the appropriate number of degrees of freedom (dashed lines). In
the definition of the fit chisquared, each bin is weighted by the inverse of the variance
of the Gaussian fluctuations used to generate its contents.
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Figure 30: Same as figure 29, except that:
1. the spectrum observed in each experiment is generated by Poisson fluctuations from

the fixed background;

2. in the definition of the fit chisquared, each bin is weighted by the inverse of the
observed bin contents (Neyman’s chisquared).
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Figure 31: Same as figure 29, except that:
1. the spectrum observed in each experiment is generated by Poisson fluctuations from

the fixed background;

2. in the definition of the fit chisquared, each bin is weighted by the inverse of the fitted
bin contents (Pearson’s chisquared).
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Figure 32: Same as figure 29, except that:
1. the spectrum observed in each experiment is generated by Poisson fluctuations from

the fixed background;

2. the fixed background consists of a Gaussian resonance on top of a quadratic back-
ground (six parameters);

3. in the definition of the fit chisquared, each bin is weighted by the inverse of the fitted
bin contents (Pearson’s chisquared).
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Figure 33: Same as figure 29, except that:
1. the spectrum observed in each experiment is generated by Poisson fluctuations from

the fixed background;

2. The H1 fit (top right) is to a fixed-width Gaussian resonance on top of a quadratic
background (five parameters);

3. in the definition of the fit chisquared, each bin is weighted by the inverse of the fitted
bin contents (Pearson’s chisquared);
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Figure 34: Top: random histogram (solid line) of Poisson variates generated from a
quadratic spectrum (dashed line). Bottom: corresponding variation of the statistic
q̂4 = C4 p̂4 as a function of the mass of the hypothetical Gaussian resonance. Here,
p̂4 is the fitted amplitude of the resonance (see text for details).
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Figure 35: Distribution densities of the one-sided (a) and two-sided (b) delta-chisquared
statistics, respectively δX2

sup(1s) and δX2
sup(2s), for a set of pseudo-experiments simulat-

ing the X(3872) analysis. For the solid histograms, the delta-chisquareds were calcu-
lated by the finite-sample bootstrap method described in section 6.2.2. For the dashed
histograms, the delta-chisquareds were obtained via the grid search implementation of
the asymptotic bootstrap method described in section 6.2.3. The statistics boxes apply
to the solid histograms.
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Figure 36: Top: integrand of the constant K of equation (6.2.6), as a function of the
integration variable θ. Bottom: survivor function of the one-sided delta-chisquared
statistic δX2

sup(1s). The solid line was obtained from a set of pseudo-experiments gener-

ated with the finite-sample bootstrap method (see section 6.2.2), and is compared with
the upper bound of equation (6.2.5) in the text (dot-dashes), and with half-chisquared
distributions for one and two degrees of freedom (dashes and dots, respectively).
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Figure 37: Power of one-sided tests when nuisance parameters are present under the
alternative but not under the null. For this example calculation, the background spec-
trum of Figure 28(a) was used, and a Gaussian signal with a width of 4.3 MeV/c2 was
superimposed at a location of 3872 MeV/c2. Five power functions are plotted as a
function of the number of signal events: the χ2 goodness-of-fit test (dot-dashes), the
AveLR test (dots), the ExpLR and SupLR tests (indistinguishable from each other and
shown by dashes), and the LR test for the case where the signal location is known a
priori (solid). All power functions are evaluated assuming a significance level of 0.27%.
(SupLR is another name for δX2

sup, which for one-sided tests is given by equation (6.2.3)
in the text.)
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Figure 38: Same as Figure 37, but for two-sided tests.
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Figure 39: Chisquared tail probabilities, converted into numbers of standard deviations
for a Gaussian variate. The solid line corresponds to one degree of freedom and is simply
the square-root function. The dashed, dotted, and dot-dashed lines are for two, three,
and four degrees of freedom, respectively.
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Figure 40: Coverage of a standard search and discovery procedure in HEP. One is
testing the mean, constrained to be positive, of a Gaussian pdf with unit width. The
discovery threshold is set at 5σ. When no discovery is claimed, an upper limit with
confidence level α1 is calculated. Otherwise a two-sided interval with confidence level
α2 is reported. The solid lines show the coverage of this procedure for various choices of
α1 and α2. The dashed (dotted) lines show the 95% (68%) level. Plot (d) corresponds
to the usual choices.
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Figure 41: Conditional coverage of a standard search and discovery procedure in HEP.
One is interested in the mean µ, constrained to be positive, of a Gaussian pdf with
unit width. The discovery threshold is set at 5σ. When no discovery is claimed, a
95% confidence level upper limit on µ is calculated. Otherwise a 68% confidence level
two-sided interval is reported. The solid line shows the coverage of the upper limit with
respect to the subset of experiments claiming no discovery. The dashed line shows the
coverage of the two-sided interval with respect to the subset of experiments claiming
discovery.
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Figure 42: Neyman construction of conditional intervals for the problem of determining
the mean µ, constrained to be positive, of a Gaussian pdf, when one observation x has
been made. The dotted line indicates the critical value xc = nσ of x: observations
above that value lead to rejection of the null hypothesis H0 : µ = 0. The solid line to
the left of xc is the conditional 95% C.L. upper limit on µ, given x < xc. The two solid
lines to the right of xc mark the boundaries of the conditional 68% C.L. central interval
on µ, given x ≥ xc. The dashed lines are the corresponding unconditional intervals.
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Figure 43: Neyman construction of conditional intervals for the problem of determining
the mean µ, constrained to be positive, of a Gaussian pdf, when one observation x has
been made. The dotted line indicates the critical value xc = nσ of x: observations
above that value lead to rejection of the null hypothesis H0 : µ = 0. The solid lines to
the left (right) of xc mark the boundaries of the conditional 95% (68%) C.L. intervals
for µ, using a likelihood ratio ordering rule.[46] The dashed lines are the corresponding
unconditional intervals.
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Figure 44: Result of 20,000 pseudo-experiments in which a mass spectrum, drawn
from a quadratic polynomial template, is fit to two models: the fit 1 model is a simple
quadratic polynomial, whereas the fit 2 model is the sum of a quadratic polynomial
and a fixed-width Gaussian. The width of the Gaussian is comparable to the bin width
of the mass spectrum. Plots (a) and (c) are distributions of the mean of the Gaussian
from fit 2, and plots (b) and (d) are distributions of the delta-chisquared between the
two fits. For plots (a) and (b), the initial value of the Gaussian mean given to the
fitter (minuit) for fit 2 was 3.825. For plots (c) and (d), fit 2 was repeated for seventy
initial values of the Gaussian mean, equally spaced between 3.65 and 4.00, and only
the fit with the lowest chisquared was retained. The amplitude of the Gaussian in fit
2 was always required to be positive.
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Figure 45: Result of pseudo-experiments in which a mass spectrum, drawn from the
quadratic template of Figure 28b, is fit to a quadratic polynomial (fit 1) and to the
sum of a quadratic polynomial and a fixed-width Gaussian resonance (fit 2). The solid
histograms show distributions of the delta-chisquared between fits 1 and 2 for different
constraints on the mean of the Gaussian resonance. For plot (a), that mean can be
anywhere between 3.65 and 4.00; for plot (b), between 3.825 and 4.00; for plot (c),
between 3.870 and 3.875; for plots (d1) and (d2), the mean is kept fixed at 3.8714.
The amplitude of the Gaussian resonance is allowed to be positive or negative in all
plots except (d2), where it is constrained to be positive. The dotted (dashed) lines are
chisquared densities for one (two) degree(s) of freedom.
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