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The frequentist interpretation of measurement results requires the specification of an ensemble of independent
replications of the same experiment. For complex calculations of bias, coverage, significance, etc., this ensemble
is often simulated by running Monte Carlo pseudo-experiments. In order to be valid, the latter must obey
the Frequentist Principle and the Anticipation Criterion. We formulate these two principles and describe some
of their consequences in relation to stopping rules, conditioning, and nuisance parameters. The discussion is

illustrated with examples taken from high-energy physics.

1. INTRODUCTION

Many statistical analyses in physics are based on a
frequency interpretation of probability. For example,
the result of measuring a physical constant 6 can be
reported in the form of a 1 — a confidence interval
[X1, X5], with the understanding that if the measure-
ment is replicated a large number of times, one will
have X; < 0 < X5 in a fraction 1 — « of the repli-
cations. This type of interpretation therefore requires
the definition of a reference set of similar measure-
ments:

The reference set of a measurement is the
ensemble of experiments in which the actu-
ally performed experiment is considered to
be embedded for the purpose of interpreting
its results in a frequentist framework.

A major appeal of frequentism among physicists is its
empirical definition of probability. By the strong law
of large numbers, probabilities can be approximated in
finite ensembles, and such approximations converge to
the true value as the ensemble size increases. In other
words, frequentist confidence statements are experi-
mentally verifiable.

Physicists use Monte Carlo generated ensembles in
various applications: to check a fitting algorithm for
the presence of bias, non-Gaussian pulls, or other
pathologies; to calculate the coverage of confidence in-
tervals or upper limits; to average out statistical fluc-
tuations in order to isolate systematic effects; to calcu-
late goodness-of-fit measures and significances; to de-
sign experiments; etc. When constructing ensembles
to address these questions, one needs to pay attention
to a number of subtle issues that arise in a frequentist
framework: what is the correct stopping rule?; is it ap-
propriate to condition, and if so, on what statistic?;
how should nuisance parameters be handled?

The aim of this paper is to draw attention to these
issues and to propose some recommendations where
possible. We start by discussing basic frequentist prin-
ciples in section 2 and illustrate them with an exam-
ple of conditioning in section 3. The importance of
stopping rules is argued in section 4. Finally, some

purely frequentist methods to handle nuisance param-
eters are described in section 5.

2. FREQUENTIST PRINCIPLES

In order to deserve the label frequentist, a statisti-
cal procedure and its associated ensemble must satisfy
two core principles, which we examine in the next two
subsections.

2.1. The Frequentist Guarantee
The first principle states the aims of frequentism:

Frequentist Guarantee [1]:

In repeated use of a statistical proce-
dure, the long-run average actual accuracy
should not be less than (and ideally should
equal) the long-run average reported accu-
racy.

To clarify this principle, we return to the 1 — « con-
fidence interval procedure mentioned in the Introduc-
tion. Let £ be an ensemble of intervals obtained by
applying this procedure many times on different, in-
dependent data. The actual accuracy of an interval in
€ is 1 or 0: either the interval covers the true value
of the parameter of interest, or it does not. The av-
erage actual accuracy is therefore simply the fraction
of intervals in £ that cover. On the other hand, the
average reported accuracy is 1 — a. The reported ac-
curacy is often the same for all intervals in &, but in
some settings it is possible to report a different, data-
dependent accuracy for each interval. Thus, averag-
ing the reported accuracy is not necessarily a trivial
operation. A procedure that satisfies the Frequentist
Guarantee is said to have coverage.

In a sense, the Frequentist Guarantee is only weakly
constraining, because it does not require a proce-
dure to have coverage when applied to repeated mea-
surements of the same quantity. To see how this is
relevant, consider the construction of a 68% confi-
dence interval for the mean p of a Poisson distribu-
tion. One procedure is to take all u values satisfying
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(n — w)?/u < 1, where n is the observed number of
events. The resulting interval actually undercovers for
many values of p and overcovers for other values, so
that the Frequentist Guarantee appears to be satisfied
on average. To make this statement more precise we
need a weighting function with which to carry out the
average over p. A simple proposal is to perform local
smoothing of the coverage function, resulting in local
average coverage [1].

Physicists may object to this notion of local average
coverage on the grounds that they sometimes repeat-
edly measure a given constant of nature and are then
interested in the coverage obtained for that particular
constant, not in an average coverage over “nearby”
constants. A possible answer is that one rarely mea-
sures the quantity of interest directly. Rather, one
measures a combination of the quantity of interest
with calibration constants, efficiencies, sample sizes,
etc., all of which vary from one measurement to the
next, so that an effective averaging does take place.

Finally, it could be argued that even Bayesians
should subscribe to some form of the Frequentist
Guarantee. If, over repeated use, a 95% credible
Bayesian interval fails to cover the true value more
than 30% of the time (say), then there must be some-
thing seriously wrong with that interval.

2.2. The Anticipation Criterion

Although the Frequentist Guarantee specifies how a
statistical procedure should behave under many rep-
etitions of a measurement, it does not indicate what
constitutes a valid repetition, and hence a valid en-
semble. To the extent that this question involves the
notion of randomness, it is well beyond the scope of
this paper. From a practical standpoint however, one
would like to stipulate that all effects susceptible to
interfere with that randomness must be recognized as
such and included in the construction of the ensemble,
i.e. “anticipated”[2]. Hence the second principle:

Anticipation Criterion:

Ensembles must anticipate all elements of
chance and all elements of choice of the
actual experiments they serve to interpret.

To clarify, “elements of chance” refers to statistical
fluctuations of course, but also to systematic uncer-
tainties when the latter come from nuisance parame-
ters that are determined by auxiliary measurements.
On the other hand, “elements of choice” refers to ac-
tions by experimenters, in particular how they decide
to stop the experiment, and what decisions they make
after stopping.

One can identify several levels of anticipation. At
the highest level, the data collection and analysis
methods, as well as the reference ensemble used to in-
terpret results, are fully specified at the outset. They

do not change once the data is observed. The refer-
ence ensemble is called “unconditional”.

At the second highest level, the data collection and
analysis methods are fully specified at the outset, but
the reference ensemble is not. The latter will be fully
determined once the data is observed, and is therefore
“conditional”. Although a conditional ensemble is not
known before observing the data, it is a subset in a
known partition of a known unconditional ensemble.

The lowest level of anticipation is occupied by
Bayesian methods, which fully condition on the ob-
served data. The reference ensemble collapses to a
point and can therefore no longer be used as a refer-
ence.

As the level of anticipation decreases, the reference
ensemble becomes smaller. A remarkable result is that
within the second level of anticipation one can refine
the conditioning partition to the point where it is pos-
sible to give a Bayesian interpretation to frequentist
conclusions, and vice-versa [3].

3. CONDITIONING

To illustrate the interplay between anticipation and
conditioning, we present here a famous example orig-
inally due to Cox [4]. Suppose we make one observa-
tion of a rare particle and wish to estimate its mass
p from the momenta of its decay products. For the
sake of simplicity, assume that the estimator X of p is
normal with mean u and variance o2. There is a 50%
chance that the particle decays hadronically, in which
case 0 = 10; otherwise the particle decays leptonically
and o = 1. Consider the following 68% confidence in-
terval procedures:

1. Unconditional
If the particle decayed hadronically, report X £
Op, otherwise report X =+ dy, where ¢, and §, are
chosen so as to minimize the expected length
(0) = 6p + 0 subject to the constraint of 68%
coverage. This yields d, = 2.20 and 6, = 5.06.
The expected length is 7.26.

2. Conditional
If we condition on the decay mode, then the best
interval is X £10 if the particle decayed hadron-
ically, and X £ 1 otherwise. So the expected
length is 11.0 in this case.

Note that in both cases we used all the information
available: the measurement X as well as the decay
mode. Both procedures are valid; the only difference
between them is the reference frame. The uncondi-
tional ensemble includes both decay modes, whereas
the conditional one only includes the observed decay
mode.

The expected length is shorter for unconditional in-
tervals than for conditional ones. Does this mean we
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should quote the former? If our aim is to report what
we learned from the data we observed, then clearly we
should report the conditional interval. Suppose indeed
that we observed a hadronic decay. The unconditional
interval width is then 10.12, compared to 20.0 for the
conditional one. The reason the unconditional inter-
val is shorter is that, if we could repeat the experi-
ment, we might observe the particle decaying into the
leptonic mode. However, this is irrelevant to the inter-
pretation of the observation we actually made. This
example illustrates a general feature of conditioning,
that it usually increases expected length, and reduces
power in test settings.

Another aspect of the previous example is that the
conditioning statistic (the decay mode) is ancillary:
its distribution does not depend on the parameter
of interest (the particle mass). This is not always
the case. Suppose for example that we are given
a sample from a normal distribution with unit vari-
ance and unknown mean 6, and that we wish to test
Hy : 0 = —1 versus Hy : §# = +1. The standard
symmetric Neyman-Pearson test based on the sam-
ple mean X as test statistic rejects Hy if X > 0. It
makes no distinction between X = 0.5 and X = 5,
even though in the latter case we certainly feel more
confident in our rejection of Hy. Although X is not
ancillary, it is possible to use it to calculate a con-
ditional “measure of confidence” to help characterize
one’s decision regarding Hy [5]. Unfortunately, a gen-
eral theory for choosing such conditioning statistics
does not exist.

4. STOPPING RULES

Stopping rules specify how an experiment is to be
terminated. High-energy physics experiments are of-
ten sequential, so it is important to properly incorpo-
rate stopping rules in the construction of ensembles.

As a first example, consider the measurement of the
branching fraction 6 for the decay of a rare particle A
into a particle B. Suppose we observe a total of n = 12
decays, © = 9 of which are A — B transitions, and
the rest, r = 3, are A /4 B transitions. We wish to
test Ho : @ =1/2 versus Hy : 0 > 1/2.

A possible stopping rule is to stop the experiment
after observing a total number of decays n. The prob-
ability mass function (pmf) is then binomial:

faio) = (2)ea-ores W

and the p value for testing Hy is:

12
Py = Z ( 12 ) 0" (1 —-60)2"" = 0.075. (2)

1
i=9

An equally valid stopping rule is to stop the exper-
iment after observing a number r of A A B decays.

Now the pmf is negative binomial:

faio) = (TP e aen @

and the p value is:

oy = i(2ji>ei (1-0)* = 0.0325. (4)

1=9

If we adopt a 5% threshold for accepting or reject-
ing Hy, we see that the binomial model leads to ac-
ceptance, whereas the negative binomial model leads
to rejection.

Here is a more intriguing example [6]. Imagine a
physicist working at some famous particle accelerator
and developping a procedure to select collision events
that contain a Higgs boson. Assume that the expected
rate of background events accepted by this procedure
is known very accurately. Applying his technique to
a given dataset, the physicist observes 68 events and
expects a background of 50. The (Poisson) probability
for 50 to fluctuate up to 68 or more is 0.89%, and the
physicist concludes that there is significant evidence
against Hg, the background-only hypothesis, at the
1% level.

Is this conclusion correct? Perhaps the physicist
just decided to take a single sample. But what would
he have done if this sample had not yielded a signif-
icant result? Perhaps he would have taken another
sample! So the real procedure the physicist was con-
sidering is actually of the form:

e Take a data sample, count the number n; of
Higgs candidates, and calculate the expected
background b;

o If P(N > ny|b) < « then stop and reject Ho;

e Otherwise, take a second sample with the same
expected background, count the number ny of
Higgs candidates and reject Hy if IP(N > nq +
ng | 2b) < a.

For this test procedure to have a level of 1%, o must
be set at 0.67%. Since the actual data had a p value
of 0.89%, the physicist should not have rejected Hy.
So now the physicist finds himself forced to take
another sample. There are two interesting cases:

1. The second sample yields 57 candidate events,
for a total of 125. The probability for the ex-
pected background (100 events now) to fluctu-
ate up to 125 or more is 0.88% > 0.67%, so
the result is not significant. However, the re-
sult would have been significant if the physicist
had not stopped halfway through data taking to
calculate the p value!

258



PHYSTAT2003, SLAC, Sanford, California, September 8-11, 2003

2. The second sample yields 59 candidate events,
for a total of 127. The p value is now 0.52% and
significance has been obtained, unless of course
the physicist was planning to take a third sample
in the event of no significance.

Bayesian methods are generally independent of the
stopping rule. It is therefore somewhat ironic that
frequentists, who start from an objective definition of
probability, should end up with results that depend
on the thought processes of the experimenter.

5. NUISANCE PARAMETERS

Most problems of inference involve nuisance param-
eters, i.e. uninteresting parameters that are incom-
pletely known and therefore add to the overall uncer-
tainty on the parameters of interest. To fix ideas, as-
sume that we have a sample {z1, ..., z,} whose prob-
ability density function (pdf) f(Z; p,v) depends on
a parameter of interest p and a nuisance parameter
v, and that the latter can be determined from a sep-
arate sample {y1,...,ym with pdf g(¢; v). Correct
inference about p must then be derived from the joint
pdf

Wi pv) = f(@5 pv) 97 v). ()
What is often done in practive however, is to first
obtain a distribution 7 () for v, usually by combining

measurement results with a sensible guess for the form
of w(v). Inference about p is then based on:

W(E; ) = / f@E; ) a@)y e, (6)

Although this technique borrows elements from both
Bayesian and frequentist methodologies, it really be-
longs to neither and is more properly referred to as a
hybrid non-frequentist/non-Bayesian approach.

We illustrate the handling of nuisance parameters
with a simple p value calculation. Suppose that a
search for a new particle ends with a sample of ng = 12
candidates over a separately measured background of
vy = 5.7£0.47, where we ignore the uncertainty on the
standard error 0.47. Let u be the unknown expected
number of new particles among the 12 candidates. We
wish to test Hp : p =0 versus Hy : > 0.

A typical model for this problem consists of a Pois-
son density for the number of observed candidates and
a Gaussian for the background measurement. Using
equation (6) with a simple Monte Carlo integration
routine, one obtains a p value of ~ 1.6%. For refer-
ence, when there is no uncertainty on vy the p value
is ~ 1.4%.

While there are many purely frequentist approaches
to the elimination of nuisance parameters, few of these
have general applicability. Concentrating on the lat-
ter, we discuss the likelihood ratio and confidence in-
terval methods in the next two subsections.

5.1. Likelihood Ratio Method
The likelihood ratio statistic A is defined by:

sup L(u,v|no, 1)
pn=0
v>0

sup L(u, v |no, ) ’
n=0
v>0

where, for vy > Awv:

(p+v)e
'flo!

v—ug 2
E(/L7V|TL0,V0) X e PV 67%( Auo)

Simple calculus leads to:

—2InA = 2(ngln " + 5 —ng) + (%52)’
=0

N2
with: 0 = ”O_ZA"2 + \/(VO_QAVZ> + no Av2.

if ng > 1y,

if ng < 1y,

Since A depends on ng and vy, its distribution under
Hy depends on the true expected background v;. A
natural simplification is to examine the limit v, — oo.
Application of theorems describing the asymptotic
behavior of —2In A must take into account that for
ng < vy the analytical maximum of the likelihood lies
outside the physical region p > 0. The correct asymp-
totic result is that, under Hy, half a unit of probability
is carried by the singleton {—21n A = 0}, and the other
half is distributed as a chisquared with one degree of
freedom over 0 < —2In A < +o0.

For our example the expected background is only
5.7 particles however, so one may wonder how close
this is to the asymptotic limit. Here is an algorithm
to check this. Choose a true number of background
events v; and repeat the following three steps a large
number of times:

1. Generate a Gaussian variate vy with mean v
and width Av;

2. Generate a Poisson variate ng with mean 1y;

3. Calculate A from the generated vy and ng.

The p value is then equal to the fraction of pseudo-
experiments that yield a likelihood ratio A smaller
than the \g obtained from the observed data.

Note that this algorithm does not “smear” the true
value of any parameter, in contrast with equation (6).
The price for this is that the result depends on the
choice of v;. For 14 varying from 0.5 to 50, the p value
ranges from ~ 0.48 to ~ 1.2%. A general prescription
for dealing with a p value dependence on nuisance
parameters is to use the so-called supremum p value:

Peup = sup P(=2In X > —2In X | p,v)] g
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From a frequentist point of view, the supremum p
value is valid, in the sense that:

P(psup < @) < a, foreacha€[0,1], (8)
regardless of the true value of the nuisance parameter.
Although it is often difficult to calculate a supremum,
in this case it turns out to equal the asymptotic limit
to a good approximation. In our example —21In \g =
5.02 and corresponds to psup & Poo = 1.25%.

As the attentive reader will have noticed, the p value
is smaller for Av = 0.47 than for Av = 0. This is a
consequence of the discreteness of Poisson statistics;
it does not violate inequality (8) because pgyp actually
overcovers a little when Av = 0. To avoid the bias re-
sulting from this overcoverage, the use of mid-p values
is sometimes advocated for the purpose of comparing
or combining p values [7].

5.2. Confidence Interval Method

The supremum p value introduced in the previous
section can be defined for any test statistic, although
it will not always give useful results. If for example in
our new particle search we take the total number ng of
observed candidates as test statistic, the p value will
be 100% since the background v is unbounded from
above. A more satisfactory method proceeds as fol-
lows [8, 9]. First, construct a 1 — 3 confidence interval
C for the nuisance parameter v, then maximize the p
value over that interval, and finally correct the result
for the fact that 8 # 0:

pﬁ = sup IP(NZnO|/'I/’V)|y,:0 + ﬁ
veCp

It can be shown that this is also a valid p value.

For the sake of illustration with our example, we
consider three choices of § and construct the corre-
sponding 1 — 3 confidence intervals for v;:

1-— ﬂ = 995% : 00_005 = [4:387 702]
1-— ﬁ = 999% : 00,001 = [4.15, 7.25]
1-— 6 = 9999% : 00,0001 = [387, 753]

To calculate the p value, a good choice of statistic is
the maximum likelihood estimator of the signal, i.e.
$ = ng — vg. Under Hy, the survivor function of 3 is

given by:
0o 1+ erf ( Eope=s
IP(SZg —_ (\/iAV)I;t'EVt
k=0 1+€‘I‘f(\/§fAu)
We then find:
1-08= 99.5%: pg = 1.6% +0.5% = 2.1%
1-8=99.9%: ps = 1.7% +01% = 1.8%
1—-8= 99.99% : pg = 1.88%+0.01% = 1.89%
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An important point about the confidence interval
method is that, in order to satisfy the Anticipation
Criterion, the value of 8 and the confidence set Cj
must be specified before looking at the data. Since pg
is never smaller than (3, the latter should be small. In
particular, if pg is used in a level-« test, then 8 must
be smaller than « for the test to be useful.

6. SUMMARY

From the practical point of view of someone ana-
lyzing data, the most critical property of frequentist
ensembles is their “anticipatoriness.” This requires
that all the structural elements of an analysis (i.e.
test sizes, interval procedures, bin boundaries, stop-
ping rules, etc.) be in place before looking at the
data. The only exception to this requirement occurs
in situations where conditioning is both possible and
appropriate. Even in that case, the conditioning par-
tition itself must be specified beforehand.
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