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Abstract

The unbinnedmaximimum likelihood fitting method,usedin mary current
analysesncluding Belle's measurementsf sii2¢; andlifetimes, maximizes
theuseof availableinformationto obtaintheshapeof adistributionin theface
of limited statistics.However, a significantdifficulty is thattherehasbeenno

methodfor evaluatinggoodness-of-fifor the result. We examinesomeissues
surroundingthis questionand concludethat an unbinnedgoodness-of-fitest
may bepossible.

1 INTRODUCTION

The measurementf sin2¢, at Belle[]] includesa procedureof fitting the distribution of eventsin a

measuredjuantity(propertime differenceAr) to afunctionwhoseshapeds dependenbn sin2¢; . If the

numberof eventsis suficient, the distribution may be binnedandfitted via the leastsquarer binned
maximumlik elihoodmethodsandthe quality of resultsobtainedby differentmethodss approximately
equialent. For thefirst measurementsiowever, thenumberof eventsis limited, andto mosteffectively

useall availableinformation,the unbinnedmaximumlik elihoodmethod(UMXxL) hasbeenused.

Onetroublesomespecof fitting with this methodhasbeenthelack of ary prescriptionfor eval-
uatinggoodness-of-fitto determinewhetherthe dataare statisticallyconsistentvith thefitted shape A
poorfit couldindicatethatthe fitting functionis inappropriateor inaccuratepr, if thereis background,
thatit is not correctlyestimated.For ary resultto be credible,it is importantto know thatthe fits have
reasonableonfidence. For binnedmethods suchasleast-squareghe chisquarevaluegivesa straight-
forwardmeasuref confidenceTo date,no analogousnethodhasbeenfoundfor UMXxL, andit hasbeen
necessaryo useothermeanssuchasrevertingto binningor generatingtoy Monte Carlo” distributions,
to make this determinationWe reportheresomepreliminaryfindingsfrom a searchfor aformal means
of evaluatinggoodnes®f fit within UMXxL.

2 OUTLINE OF THE UMXxL METHOD

We bagin with anexperimentthathascollectedN eventsin which the quantityz, which may be multi-
dimensionaljs measuredor eachevent. The set{z;} is fitted to a normalizedprobability distribution
function(p.d.f.), f(z; @), wheretheunknavn parameterx mayalsobe multidimensionalby maximizing
thelikelihood,

E(Ot) = Hf(m’ua)a

with respecto «. a4, is definedto be the valueof « that maximizesL(«) in a given dataset. It is
equialent,andsomeavhatsimpler to maximize

N
InL(a) = Aa) = Zlnf(avi; «)
Theprocedures describedn Ref.[2].
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3 ENSEMBLE DISTRIBUTIONSOF A

In themethodof leastsquaresthe x? valueis ameasuref themagnitudeof fluctuationsof adistribution
from the fitted function. Thereis a well-establishegrescriptionfor goodness-of-fiivherebyone can
determinewhetherthe value is statistically consistentwith the fitted distribution. Analogously one
mightlook atthe distribution in A(«,,4,) Over anensembleof experimentso determinefit quality. As
we will shav, however, the A(anq,) Valueitself is not useful. Neverthelessit is instructve to explore
this avenue asit mayprovide insightinto thereason@ndsuggespromisingdirections.

Onewould first like to determinehow the A(a,.q,) aredistributed over an ensembleof experi-
mentswith N eventseach wherethetrue probability densityis f(x; &). Thedistribution is presumably
pealed, with awell-definedmeanvalueandfinite width dueto statisticalfluctuations.We first consider
a distribution with fixed parameterswherethe distribution is straightforvardly obtainable,and then
examinethe effect of allowing parametewariations wherethe pictureis considerablydifferent.

3.1 Fixed Distributions

If noparametersirevariedin thefitting function f(z; @), thenthelikelihoodis well-defined.The value
of A(@)/N istheaveragevalueof In f(z; &) overthedatasef z; }. If thetruep.d.f.isalsof(z; &), and
N is verylarge, A\(a) /N approachethemeanin f(z; &) over thedistribution f(z; &), or

lim A(a) = N/dxf(x;éz)lnf(x;@) = NA(a)

N—o00

whichis equalto the ensemblemeanfor finite N. The statisticalvarianceof A(a) is[3]

Jim V@] = N{ [ duf (s e)nf (z; @) - 32(a))
= Né&3(a)

It canbe shavn thatthe distribution in A(a)/N is Gaussiarfor large N. Distributonsin A(a)/N for
otherp.d.f!s fitted to f(x; @) may be foundin a similar way. One may then constructa teststatistic
X2 =[\a) - NX(&)]Q/N&?\(&) wherelarge valuesimply incompatibility betweerthe hypothesisand
data.A smallvalueof X? signalsconsisteng with the hypothesisut is notasstrongasatruegoodness-
of-fit testin thatit cannotrule out all alternatve hypothesesWhatit is ableto do is to placelimits on
specificclasse®f alternatves,which for mary applicationanay be considereduficient.

3.2 Distributionswith free parameters

Moreusually « is allowedto vary, andthebestestimatdor a, ez, IS thatfor which A(«) is maximum.
Theensemblalistribution in A(ay,,4z) is relatedto but differentfrom thatin A(a). For eachexperiment,
AMamaz) > A(@) sothedistribution mustshift in the positive direction. If the shiftscouldbe character
ized, onemight expectto be ableto extractthe goodness-of-fiby comparing\(a.,q.) to the expected
meanandwidth. However, a recentstudyby J. Heinrich[4] indicatesthatthe maximumlog likelihood
valuemay be equalto the expectedvaluefor thefitted valueof a4

~

Mmaz) = NXomaz)- (Heinrich's conjecture) (1)

He studiedtwo specificp.d.fis, with Monte Carlo and analytically If this is obseration holds more
generallyasHeinrichspeculateghe“confidencdevel” is always100%andthelik elihoodvaluecontains
no informationaboutthegoodnes®f fit. We first examinethis conjectureandthenreturnto thequestion
of theensembldistribution of A(amaz)-
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Fig. 1: Distribution of A(Qmaz)/N VS. Qmaz fOr f(z;a) = 2(11%?/23) a = 0.5, andN = 1000.

3.21 Heinrich's conjecture

It is corvenientto rewrite theparametrizeg.d.f. asf (z; a) = n(a)e "(*®) andthesetof measurements,
{z;}, asa*measurep.d.f.] g(z) = & SN, 6(z — z;), sothat

AMa) = N/da: g(z)Inf(zr;a) = N/da: g(lnn —h) = N(lnn — (h)) 2

where(h) = [dz gh is the “expectationvalue” of the function 4 over the measured.d.f., g. At the
maximum,thefirst derwatlves - arezero:

oA Jdlnn oh
=0=N - .

80@ 0 ( Bai 8()51))

Onecanseethat,onceay,q; IS determmedthevaluesof( )(]m‘m arealsofully defined.To establish

the A(amaqz) value,oneneedsn additionthe valueof (h)aw

Looking atthetwo p.d.f sexaminedby Heinrich, it is now clearthatthey arespecialcasesvhere
(M) amae is awaysfully determinedoy (2% )amw (e h =3, ki(a) CZ):

o flza) = Lle —@/e: here,h = z/a, SO = —h/a, and( )am” = —(h) apman/ ¥maz -
o f(z;01,09) = \/%m exp(= <ga;‘1> E heretherela/antconstrainlis 337’”2 = —2h/ay.
2
In otherwords, \(amaz) IS to befoundwith nofurtherinput from data:
alnn
)\(amaw) = lnn ama;c Zk ama:c Do ‘amam)

While thesearespecialcasesvheretherelationshipbetweenh)a,,... and((,%’ji)%mm hasnodependence
ondata,this derivationshawvs thatmary casesnay have partial correlationsFor example taking

1+ az?
2(1+ «/3)
where|z| < 1, it is clearthath andits derivativeshave differentdependencesn z. However, if h and
ahgx %) aredisplayedaspower seriesexpansions:

flz;0) =

(h(z; @) = —(In(1 + az?)) =
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Fig. 2: Relationof A(@maz) to A(@) for f(z;a) = ie‘”/"‘, N =10, anda = 1.0. Themagentaurweis theexpectedmean,
NX(a), thedashecturesarethe1 — o envelope, NA(«) + + /Na?, andthegreencuneis A(a) for oneexperimentwith the
indicatedvalueof A(a@).

it is clearthattherearesharederms.If thetruedistribution follows the sameparametrizationthe statis-
tical fluctuationsaboutthe remaininguncorrelategartresultin smallfluctuationsof A(«a;,,q,) aboutthe
expectedvalue. Figurel shavs thetwo-dimensionadistribution of a4, andA(ay,ez)- In this casethe
fluctuationsaresmall comparedo the total statisticalspreadof (a4, ), SOthatHeinrich's conjecture
holdsapproximately Themagnitudeof thefluctuationselative to theoverall spreadn A(a;,,q, ) depends
on the functionalform of the p.d.f.. Distributionsthat differ greatlyfrom the parameterizedorm may
have A(aymaz ) Valuesthatdiverge from N A(a), but no quantitatve studyhasyetbeenmade.In ary case,
thelack of auniversalrecipewould seento beaseriousmpedimento developinga goodness-of-fitest.

3.22 Distribution in A(@maz)

While we have concludedthat A\(a.,q.) by itself cannotcontaingoodness-of-fiinformation, thereis

still somemotivationfor studyingits ensemblalistribution. For example,if onehasa combinedfit over
differentsetsor typesof data,the valuesof A(anq;) in subsetof the datamay be comparedwith the
expectationasdescribedn Section3.1,to determinavhetherthey areindividually andcollectively con-
sistentwith the overall result. In addition,a formal methodof deriving the distribution would provide a
quick meansof gleaninginformationequivalentto thatproducedy the cumbersométoy Monte Carlo”

method,facilitating a more thoroughexploration of statisticalandfitting issuesthanwould otherwise
be practical. Knowledgeof the ensemblalistribution may alsoallow for a betterdeterminatiorof con-
fidencelimits on parametewnalues. We presentherea very preliminary resulton this topic. If it can
beassumedhat A (maez) = NA(maz)[EQ- (1)] is a goodapproximationthenfor a given experiment,
A @maz) May be found from the A(@) value by notingthat A(«), which is aninvertedparabolan the
region of interest,intersectsN;\(a) ata = apmee With zeroslope. A valuefor the secondderivative

of A(a) canbefoundfrom Eq. (2) with g(z) = f(z; amaz). Figure?2 illustratesthis reasoning.If the
averagechangen |a,q., — @] is of theorderof theerroron ayqz, 0o, thentheaverageh (apmqz) — A(@)

is (by definition) of order0.5, which suggestshat for eachparametethe shift beveenthe meani(a)

andthe mean(anq;) is of order0.5. A simple numericaltestfor several caseswith one parameter
shavn in Tablel, appeargo supportthis hypothesis We expectto reporta morerigorousdiscussiorin

thenearfuture.

A corollary of this finding is that the processof maximizing A\(«) causeghe meana,,,,, to be
shiftedfrom the true value. A shift of 0.5in X is 0.5/1/N&3 timesthe statisticalerror andonewould
expecta,,q, t0 alsobeshiftedby the correspondingmount,in the directionof increasingi(a).
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f(z;a) | zrange| a | N mean\(a) | meanA(amaz) AN
Le=2/a17[0,00] [1.0] 10 | —16.93+£0.01 | —16.42 +0.01 | 0.51 £ 0.01
Le=2/a | [0,00] | 1.0| 100 | —169.5+£0.1 | —169.0£0.1 | 0.5+0.1

s | [-1,41] | 05| 1000| —685.1+0.1 | —684.6+0.1 | 0.5+0.1

Tablel. Differencebetweermean)(a,q.) andA(@) for threenumericalMonte Carloexperiments.

4 ADDITIONAL INFORMATION FROM DATA

Thusfar in this searchfor a goodness-of-fitestfor UMXxL, it hasbeendemonstratethatthereis a cor
relationbetweenthe maximumlik elihoodvalueandthe valueof fitted parametere the UMxL method
of parameteestimationandthat the degreeof correlationdependson the shapeof the parameterized
function. While by not binningthe datathe resolutionof the measuredjuantityz is usedto bestadwan-
tagein estimatinge, the informationthatcomesout of the fit, amqz andA(amaz), dependononly a
few averagesover the dataset(h),,,,, and ((%’ji)(mlm . Onewould think thatmoreinformationcanbe
extractedfrom the data,andthatsomeof it mayberelevantto goodness-of-fit.

Anotherway to understandherelationshipof A(ay,4;) to thedatacanbe seenfrom equation(1),
which shavsthatA(a)/N is simply theaverageof In f(z;; o) overthedatasef{z;}. If thetruep.d.f.is
f(x; amaz), thenthedistribution of In f(x;; amaz) = A; in thelimit of large NV is

AQ) = [ do £(53 0maa) 5 — 10 £ (@3 Qas)-

A amaz) /N is thenthefirst momentof A, andits ensemblelistribution approachea Gaussiarfor large
N, accordingto the CentralLimit Theorem.In principle, highermomentscanprovide additionalinfor-
mationaboutthe data. Or, more simply, one might testgoodness-of-fiby performinga Kolmogorw-
Smimnar teston {);}. If = is multidimensionathis is anattractve possiblity sincethereexists thusfar
no satishctorymultidimensionagoodness-of-fitest. Thiswill beinvestigatedn the nearfuture.

5 CONCLUSION

In searchingor anunbinnedgoodness-of-fitestfor UMxL, we have examinedthe informationcontent
of A(amaz), Startingwith the ensemblalistribution for a p.d.f. with fixed parameterandfollowing the
effect of varying parameter$o maximizeA(«). Thebehaior of A(am,qz) in this procesgevealsthata
conjectureby J. Heinrich is approximatelytrue andleadsto the reasonswhy the A(a,q;) valueitself
provideslittle or noinformationaboutfit quality. At thesametime, it suggestsomepathsthatmaylead
to aworkablegoodness-of-fitest. A preliminarycalculationof the meanof the ensemblelistribution of
A amaz) revealsashift dueto maximizationwhich resultsin a systematicshift of thefitted parameter(s)
from thetrue valueswith awell-definedmagnitudeanddirection.
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