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Format of talk

e State Maximum likelihood formulas for unbinned fits.

e Quote “theorem” as to why Goodness of Fit(GoF) cannot
exist for unbinned likelihood fits.

 Derive Bayes Theorem
 Motivate Likelihood Ratios

o UsePDE’'sto estimate the pdf of data and introduce the
concept of feeding in datainto Bayes' theorem.

o |llustrative Example for 1d unbinned fits.
e Empirical Measure of GoF

o Determining the a priori likelihood distributions using
data.
» Rigoroudy derive the Posterior likelihood function
* Rewriting Bayes Equations to take into account the fact

that apriori distributions depend on the number of
events.

* Bootstrap arguments (incidental to general argument)
e Application to binned cases
e Conclusions

» GoF exists for unbinned fits

» A priori ~function” in Bayesisthe value of the "A priori
distribution at the true value. This depends on the event
sample

» Frequentist error formulae obtain

» Bayes Theorem lives, but Bayesianism is no longer needed.
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Notation

s denotes signal. Can be multi-
dimensional.

c denotes configurations and signifies
data. Can be multi-dimensional

P(s|c) signifies the conditional
probability density in s, given c.

P(c|s) siginifies the conditional
probability density in c, given s.
pdf’s obey normalization condition.

Y /P(ds)dc =]

August 22, 2002 Rajendran Raja, Run2 aag , Fermilab



Maximum Likelihood method for

unbinned data

e Dueto R.A. Fisher

o If thereare n eventsin our sample, thenthe
likelihood of observing the n eventsis given by

L= f[ f'[.l'l,l.l-.:l
i=l

» Fisher finds the maximum likelihood point s*, by
minimizing the negative log likelihood.

=711

_I[}_‘fa ‘{: = — Z Ilrf'.l'ﬂ, {1}'){ l’.",i|+‘.'-':]:]

i=1

* Thisyieldsthe optimum estimate for the true value
of s. Thefit is unbinned, since we have evaluated
the theoretical curve at each data point. Advantage,
do not have to worry about " bin systematics”.
However, no goodness of fit criterion exists.
Likelihood at maximum likelihood point isNOT
such a measure. Unsolved problem in statistics.
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“Theorem” About the Non-existence
of GoF in unbinned Likelihood Fits.

Find the maximum likelihood point inavariablec’ in
which the theory curveisflat!

Such a transformation in multi-dimensions is known as
a hyper-cube transformation. If we evaluate the
likelihood in thisframeit comesoutto 1! I.e.
Likelihood isnot “Metric” invariant. So no
goodness of fit measure can exist!
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Derivation of Bayes' theorem

deOint — Pjoi-'rzt(S? C)dS de
dPC(}?l-cﬁMr_}na.E — P(S‘C‘) ds

dF, conditional — P (C

s)dc

{T{Pjumg — Pﬁlf'”'”-f-{'ﬁ' {‘_)d\ de = P(f_"’:)df_ X P(":)d'ﬁ
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Derivation of Bayes Theorem

AP;oint = Pioint(s, c)dsdc = P(s|c)ds x P(c)de

(ZPJU.,;”; = P(_r'|.w_)(f{' X P(s)ds = P(_H|r'_)(f;-: X Plc)de
P(c|s) x P(s) = P(s|c) x P(c)

P(cls) x P(s)
P(c)

Derivation of Normalization formulae

P(c) = /Pj-ginf(s.{:){:fs = /P(c\s) x P(s)ds

P(s|c) =

Ple) = [ Plels) x P(s)ds
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Derivation of Bayes Theorem
P(s) = /Pjﬁmf(s‘ c)de = /P(cs) x P(s)dc

P(s) = / P(c|s) x P(s)dc

m'/ Plcls)de =1

e Thisyieldsthe following normalization formulae
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Derivation of Bayes Theorem

P() = [ Plels) x P(s)ds
P(s) = [ Plslo) x P()de
[P

/ Pe)de = 1

/P{{'|.§i)ff{‘ .

/ P(s|e)ds = 1

e Leading to Bayes Theorem Familiar expression

P(c|s) x P(s)

P(s|c) = [ P(c|s) x P(s)ds
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Observation of Many
Configurations

((i1|c;) X P(t,)
P(s|c1) =
JP (llcﬁ XP(L,)(]
»  Replace P(s) by P(sicy)
P(cals) x P(s|cq)
| P(csls) x P(s|cy)ds

P(s|lcy, o) =

!”I::('.-Q |,~.‘ I / )I::(’.[ |H I I”I s I ; I j”l:: ] |:-' I I”I:: s :]{f,-;

Plsley.co) = = —
slens ez I Ples|s)Pley|s)P(s)ds/ I Plcy|s)P(s)ds

. _ y -. f)|::r'2|,-; Py |,-' J I”I:::-s )
vielding P(s|cy, co) =

i FPles |,"§ VP (e |,-s VP (s)ds
I”[:(:” |:-s I... f}[:(:g|.-s 1P 4 |,~«- J I”[: s )

generalizing. P(s|e, co...cn) =

] Plenls)...Ples|s)Pley|s)P(s)ds

e Think of ¢, as another object consisting of
C.,C,.. C,

P(cn|s) X ()

S51C
Plslen) s)ds

~ [ Plcals)
)15)... (IIPHI

where P(cy|s) = P(c,
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Likelihood Ratios

Re-write Bayes Theorem equations as a Likelihood
ratio

£ Plsle) _ Pleals)
P(s)  P(c)

Notice that the likelihood ratio is invariant under
change of variablec- ¢’ and s— s'. Though

, dc
P(c]s) = |5 P(cls)

Likelihood ratio is invariant,since the Jacobian cancels
In denominator and numerator. Similarly for
transformations s— S'. These are extremely
Important properties, and we henceforth work with
Likelihood ratios and not Likelihoods.
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Principle of Maximum
Likelihood Ratios

The quantity P(c) we interpret as the apriori
distribution of data. It does not know anything
about the theory. So the individual likelihoods

multiply.
. Pleals) _ Pleils)  Plesls)  Pleals)
“R="Plew)  Pla) \ Pl Plen)
’ P(s|lcn)  P(slcr) P(s|e) P(s|cy)
R = — _ . X _
P(s) P(s) P(s P(s)
aZogeﬁfR _ i Olog.P(c;|s) _0
_ @s

Thisis the same as the maximum likelihood
eguations.
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Maximizing wrt c

* We can keep s constant and differentiate wrt ¢

OlogeLr  OlogeP(ci|s) n OlogeP(ci) 0

8 C; (9 C; (9 C;

Olog.P(cils)  Olog.P(c;)

'!;_9 C; a C;

P(c;ils) = P(¢)

e |.e. Likelihood ratio is maximum (=1), when the
theoretical density and the data pdf are equal at all
points.

August 22, 2002 Rajendran Raja, Run2 aag , Fermilab



Evaluating the function P(c)
and the GoF

The key point to note isthat just as P(s) isthe apriori
probability of the parameter s, P(c) isthe apriori
probability density function of the data. In order to
evaluate the likelihood ratio L at the maximum
likelihood point, we need to provide it with the pdf of
data, given the event configurations c,,c, Cs...C,,.

Well known methods exist to do this, these are
collectively titled PDE’s (Probability Density
Estimators). They have recently found application in
HEP analyses (Knutson, Holstrom, Miettinen et all).

In previous uses of Bayes' theorem, to the author’ s best
knowledge, P(c), the data pdf was subsumed into the
Integral

P(c) = / P(c|s) x P(s)ds

In binned likelihood fits, one is aways comparing a
theory histogram (P(cls)) with a data histogram (P(c)).
Two pdf’ sareinvolved. The absence of two pdf'sin
Fisher maximum Likelihood method is the primary
reason for absence of GoF. Y ou need two pdf’sto make
an invariant Likelihood Ratio!
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Probability Density Estimators

 |f d isthe dimension of the vector c, then

e H=E! . hisasmoothing factor

1 y ( _Ho '3( x '3
e
(V27h)d\/(det(H)) P 207

G(c) = )

i=n

P(¢) = PDE(c n}:gc—c

P(c) = /P(C)Gm(c — ¢;)de;
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Probability Density Estimators

Guolc—c¢)= lim G(c—¢;) =0d(c— ¢)

N— 00

e Thisisassured by making the smoothing factor
depend on the number of events.

h = - Md+4)

 PDE’'saregeneraizableto arbitrary dimensions.
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| [lustrative Example

P(c|s) = —1— exp(—i)
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FIG. 1: Figure shows the histogram (with errors) ol generated events, Superimposed s e theo-

retical curve Mlels) and the POFE estimator (solid) histog i with no errors.
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| mprove the smoothing factor

e Smoothing factor should be allowed to vary asa
function of event density. Estimate event density
using constant smoothing factor and then apply the
formula

0.9
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FIG. 3 The variation of & as a function of ¢ for the example shown in Figure 2

i)

~ (nPDE(c) T
O\ (2 —ty)

2002,/08/10 1B.38
Em‘.hﬁq fockor o& a funclion of tirme

1 1.5 F 2.5 3 d.3 4 4.3 k-]

Time (arbitrary units)

The variation

of the amoothing parameter i obtained weratively as explained in the text, The flat curve s a

simoothing factor restlting from the formila i == 0.50
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PDE tracks data

2002/06/06 12.53
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FI1G. 2: Figure shows the histogram {with errors) of 1000 events in the fiducial interval 1.0 < « 500
senerated as an exponential with decay constant s=1.0, with a saperimposed Ganssian of 500
events centered at e=20 and width=0.2, The FDFE estimator is the {solidy histogram with mwo

CITOr=
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Goodness of fit

2002,/08/07 14.42
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FIG. 4: The solid curve shows the distribution of the negative log likelihood ratio NCCR at th
poairnn lkeliwood poine for SO0 disteibations, u=ing the iterative stoothing fooetion neeclsnisn

[he dashed curve shows the corresponding distribution in the case of a constant smoothing function
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Likelihood vs Likelthood Ratio

* Negativelog likelihoods, beside not being invariant are
broad. (Top Left)

* Negative Log PDE likelihood are similar (Top right)
* Thetwo correlate (Bottom left)
 Thedifferenceisthe narros GoF, negative log likelihood

ratio (Bottom right) 2002/08/23 12.31
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Results of unbinned and binned
fitting

TABLE I:
Number of  [Unbinned fit|Unbinned fit|Binned fit y?
Gaussian events| NLLR No 39 d.o.t.
S0 189, 103 304
250 H8.6 31 125
100 11.6 4.9 48
85 8.2 3.0 42
75 6.3 1.9 38
50 2.55 -0.14 30
0 0.44 -1.33 24
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2002,/06/07 17.33
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FIC. 5 Figure shows the lustogram {with errors) of 1000 events i the Gdocial interval 1.0 < ¢ < 510
senerated as an exponential with decay constant s=1.0. with a superimposed Ganssian of 85 events
centered at e=2.0 apd width=0.2, The POE estimator is the (solid) histogram with no errors.
['he data are fitted with a goodpess of fit that is 37 away [rom the average value of N ZCR. The

contimons curve shows the it to an exponential.
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2002,/06/10 13.21
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Determination of the a priori
likelthood P(s)

 We want to elucidate the nature of P(s). Bayes
theorem applies for two problems. One with fixed
s=s*, and the other where the data contain a mixture
of proper lifetimes distributed according to P(s).
This case aso resultsin the same Bayes' equations.
For the fixed parameter case, which iswhere
Bayesianism comes in, the equation below should
be treated as an OR of the possible values and P(s)
Isthe value of P(s) at the true value of s(=s*).

» For the case where data is a mixture of proper
lifetimes, the equation below isan AND over all the
possible values of s.

P(c) = /P(C|5) x P(s)ds

 SinceP(c) isgiven, P(s) can be inferred.
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Determine of the a priori
likelthood P(s)

* One can write the following eguation

P(c,

)

P(slcy) = P(s) x Lr = P(s) %

C)*
P(cy)
e Asn - o, P(slc,) will tend to a delta function.

However in thislimit, the ratio P(C,,[S)/P(C,,) will
tend to unity at s=s*, if thefit isgood, since the

data pdf and the theory pdf will be identical to each
other. The only way out of thisisto allow P(s) to

depend on nand let P(S) — d(s-s*) asn — o, We
can see this further in the equation

P(c) = /P(C|5) x P(s)ds

« Asn - oo, P(c) will havethe form P(c|s*), if it fits
theory and so, P(s) —» 9(s-Ss*) . So we should write
P(s) as P (s). We are using posterior information to
deduce priors. Thisleadsto are-write of Bayes
theorem as follows.
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Rewriting Bayes' theorem
equations

P(s|cy) P(s|ler)  P(s|es) P(s|ey,)
L, = — X e X ————=
R, R;(ﬁ) Pl(‘-:) Pl(::J pl(‘::J

The recursive chain rule now becomes

i=k

rn P(s|ck) B P{c|s)
'.\.L' — e -
Pl s) o Plci)
!-} I.- ) =|! f-) ._- i . Y
r ) S-.|C| | Lg|..‘.-. J
Rl — — 3
P(s) :L—Jf Plep)
. b N =kt 1,
. . fl‘-.|ck1 I ':|C] JFIH|C|{_|.]J JF"12|""
Lrpp=LrypXLry= i - . H )
fLI% frIHJ f,t,p“a ) nrl.{-..J

I.e Likelihood ratios multiply.
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An ansatz for P,(s)

« Theexpression Ple) = [ Ptels) « Plsjas thought
of asthe theoretical preuicuon 1ur #(c) and the PDE
can be thought of as the experimental measurement
of P©. Then one can write

5)

PPDE (Cn)

= /ERH(S) X P, (s)ds = /P(S

pred
r (C“)/ Pleals)  p (g)ds

Pe;r-p ( Ch )

Ch)ds =1

* Lg,(S) cannot be unity in general, due to statistical
fluctuations. If one takes the view that P (s) isthe
value of the distribution of P (s) at s=s* , s* being
the true value and unknown, then P_(s) is constant
and the solution is

1 I
P.(s) = — =
(8) [Lra(s)ds 2
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Determination of a prior|
likelihoods

e Thisisthevalueof theP (s) a s=s*. Thisisall that
IS needed for use in Bayes theorem. Then one can
substitute this into Bayes' theorem equations and
aet
1
P(s|cn) X P(cn) = Pleg|s) X Pu(s) = P(cy o

s) X

P(s|cn) = LN = — =

* P(slc,) isthe aposteriori likelihood for s, and is
independent of P(c) datal. We get the " Frequentisit

expression”.
* Noticeitispossibleto derive the expression only
1 1
P (!5) — . ; E e
& ’ Lr.(s)ds 2)

because of our use of the PDE. It would be
dimensionally impossible to get the expression
otherwise.
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Ansatzfor thea priori likelihood

distribution

What followsis not rigorously needed for Bayes
eguations. Weinclude it to get more physica
Insight into what is going on.

We can then ask, what can one say at this stage
about the distribution P (s)? All we know further is
that it integrates to unity. Then the simplest
function one can write for P (s) isastep function

O(s|u), where [ is the mean value of the step
function and istotally unknown. s* hasto bein the

with s, = — A
and so = 0+ A

P.(s) =0(s|u) =0its < spors > s9

|
Pu(s) =0(slp) = oy ifs1 <5 < s

Fayd

This step function is narrower than the a posteriori
likelihood distribution P(s|c,))! But we do not know
L, SO no problem. (Explain)
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Width of a posterior likelthood vs
step function.

2002/07/11 11.53
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FIG. 7 Figure shows a scatter plot of A, lall che integral voder the likelilood curve vs, S /A

where @ is the width of the likelihood distribution for 300 configurations
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ry units

4 arbitra

Bootstrap of the a posteriori
distribution

2002/07/10 15.12
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Bootstrap of the a posteriori

distribution
Plu
P(p) x 0(s|p)dpds = Q(S)dlfds

/P(,u) X du/@(s\u)ds =
L S
v S+
/—ds/ P(u)dp =1
S—A
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Bootstrap of the a posteriori
distribution

1
— al(s)ds = 1
LZAg(s)ds

S+ A

o(5) = Lr(s) = | Plslea)ds

Js—\

Lr(s)~ 2\ X P(s|cy)
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Bootstrap of the a posteriori
distribution

ﬁR(S) _ ﬁ'R(S)
2\ | Lr(s)ds

* Alsowe can identify the projection along the saxis
of the distribution as P(s|c,) = g(s)/2A, which
compl etes the bootstrap. The final result—
Freguentist formulas are correct. The a priori
likelihood and Bayes theorem have ben used to
rigorously derive the a posteriori pdf’'s. Having
served their function, the a priori likelihood isno
longer needed! (Grin on the face of the Cheshire
cat).

P(s|cy) =

..  Lra(s)  Plegls)
P(slcy) = [Lra(s)ds [ Plcn|s)ds
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owards an analytic theory of the

goodness of fit measure

 Amworking onit. Go into Hypercube . PDE’s
become easier.
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Conclusions

» A goodness of fit measure for unbinned likelihood
fits now exists. It results from demanding
invariances of the measure under variable
transformations and feeding in data into Bayes
theorem.

o A priori likelihoods can be calculated. They are
shown to depend on the amount of data. The a prior
likelihood is the value of adistribution at the true
value of the parameter. As statistics become large,
thistendsto infinity and the a priori distribution as
well as the a posterior distribtuion tend towards
delta functions.

e Implications for Bayesianism
» Bayestheorem lives.

» The practice of guessing a priori likelihoods, degree
of belief etc collectively entitled Bayesianism is no
longer needed.

» Frequentist formulae are correct. If you accept the
conclusions of this paper, the word frequentist
(invented to indicate “Not Bayesian” can also be
made obsol ete.

 We have worked in one dimension only, but the
method is valid for multi-dimensions
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Conclusions

 Theformulafor the dimensions of the step function
will have to be modified thus

1 1
Falg) = — =
) = T — @V

e Asaby-product, we have introduced a method of
iteratively determining the local smoothing factor,
that isfast.
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Applicationsto Binned
likelihoods

» Consider the case where we have one bin with a
large number of events c. The expected value of the
number of eventsiss. Then Gaussian probability
yields

1 exp(— (s—c)z) _ 1
J2rs 2s  J2rs

e With —¢)?
| XZZ(SS)

P(c|s) = exp(—)(?)

« How many think X2 isthe negative-log of a
Gaussian Likelihood? What about the log of the
denominator?

 Work with likelihood ratios and the PDE for the
datain that bin!

1 X’
exp(—~- ) 2
? C
L, = Y275 :\/g exp(——); )

1
PDE of data=——
\N 27T
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Applicationsto Binned
likelthoods

« Over many independent bins, this Likelihood ratio
becomes the product over individual bins.

nbins C| i2
L, = I_| — exp(—X?
=1

» For agood fit, one can write C =S *+¢

 Whereg, aresmall. Then

C

_ i _
[] S—.~1+Z S 1

|
 Leadingto
2

nbins
L, = ” exp(—)%'
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