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Format of talk
• State Maximum likelihood formulas for unbinned fits.
• Quote “theorem” as to why Goodness of Fit(GoF) cannot 

exist for unbinned likelihood fits.
• Derive Bayes’ Theorem
• Motivate Likelihood Ratios
• Use PDE’s to estimate the pdf of data and introduce the 

concept of feeding in data into Bayes’ theorem.
• Illustrative Example for 1d unbinned fits.
• Empirical Measure of GoF
• Determining the a priori likelihood distributions using 

data.
» Rigorously derive the Posterior likelihood function

• Rewriting Bayes’ Equations to take into account the fact 
that  a priori distributions depend on the number of 
events.

• Bootstrap arguments (incidental to general argument)
• Application to binned cases
• Conclusions

» GoF exists for unbinned fits
» A priori ``function” in Bayes is the value of the `A priori 

distribution at the true value. This depends on the event 
sample

» Frequentist error formulae obtain
» Bayes Theorem lives, but Bayesianism is no longer needed.
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Notation

s denotes signal. Can be multi-
dimensional.

c denotes configurations and signifies 
data. Can be multi-dimensional

P(s|c) signifies the conditional 
probability density in s, given c.

P(c|s) siginifies the conditional 
probability density in c, given s. 
pdf’s obey normalization condition. 

e.g.
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Maximum Likelihood method for 
unbinned data

• Due to R.A. Fisher
• If there are n events in our sample,  then the 

likelihood of observing the n events is given by

• Fisher finds the maximum likelihood point s*, by 
minimizing the negative log likelihood.

• This yields the optimum estimate for the true value 
of s. The fit is unbinned, since we have evaluated 
the theoretical curve at each data point. Advantage, 
do not have to worry about ``bin systematics”. 
However, no goodness of fit criterion exists. 
Likelihood at maximum likelihood point is NOT 
such a measure. Unsolved problem in statistics.
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“Theorem” About the Non-existence 
of GoF in unbinned Likelihood Fits.
Find the maximum likelihood point in a variable c’ in 

which the theory curve is flat!

Such a transformation in multi-dimensions is known as 
a hyper-cube transformation. If we evaluate the 
likelihood in this frame it comes out to 1 ! I.e. 
Likelihood is not “Metric” invariant. So no 
goodness of fit measure can exist!
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Derivation of Bayes’ theorem
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Derivation of Bayes’ Theorem

Derivation of Normalization formulae
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Derivation of Bayes’ Theorem

• This yields the following normalization formulae



August 22, 2002 Rajendran Raja, Run2 aag , Fermilab 9

Derivation of Bayes’ Theorem

• Leading to Bayes’ Theorem Familiar expression
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Observation of Many 
Configurations

• Replace P(s) by P(s|c1)

• Think of cn as another object consisting of 
c1,c2.. cn
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Likelihood Ratios

Re-write Bayes’ Theorem equations as a Likelihood 
ratio

Notice that the likelihood ratio is invariant under 
change of variable c→c’ and s→s’. Though

Likelihood ratio is invariant,since the Jacobian cancels 
in denominator and numerator. Similarly for 
transformations s→s’. These are extremely 
important properties, and we henceforth work with 
Likelihood ratios and not Likelihoods.
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Principle of Maximum 
Likelihood Ratios

The quantity P(c) we interpret as the a priori
distribution of data. It does not know anything 
about the theory. So the individual likelihoods 
multiply.

This is the same as the maximum likelihood 
equations.
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Maximizing  wrt c

• We can keep s constant and differentiate wrt c

• i.e. Likelihood ratio is maximum (=1), when the 
theoretical density and the data pdf are equal at all 
points.
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Evaluating the function P(c)
and the GoF

• The key point to note is that just as P(s) is the a priori 
probability of the parameter s, P(c) is the a priori 
probability density function of the data. In order to 
evaluate the likelihood ratio LR at the maximum 
likelihood point, we need to provide it with the pdf of 
data, given the event configurations c1,c2 c3…cn.

• Well known methods exist to do this, these are 
collectively titled PDE’s (Probability Density 
Estimators). They have recently found application in 
HEP analyses (Knutson, Holstrom, Miettinen et all).

• In previous uses of Bayes’ theorem, to the author’s best 
knowledge, P(c), the data pdf was subsumed into the 
integral

• In binned likelihood fits, one is always comparing a 
theory histogram  (P(c|s)) with a data histogram (P(c)). 
Two pdf’s are involved. The absence of two pdf’s in 
Fisher maximum Likelihood method is the primary 
reason for absence of GoF. You need two pdf’s to make 
an invariant Likelihood Ratio!
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Probability Density Estimators

• If d is the dimension of the vector c, then 

• H=E-1 .  h is a smoothing factor
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Probability Density Estimators

• This is assured by making  the smoothing factor 
depend on the number of events.

• PDE’s are generalizable to arbitrary dimensions.

)4/(1 +−≈ dnh
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Illustrative Example
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Improve the smoothing factor

• Smoothing factor should be allowed to vary as a 
function of event density. Estimate event density 
using constant smoothing factor and then apply the 
formula

• Iterate 3 times till things settle down.
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PDE tracks data
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Goodness of fit
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Likelihood vs Likelihood Ratio
• Negative log likelihoods, beside not being invariant are 

broad. (Top Left)
• Negative Log PDE likelihood are similar (Top right)
• The two correlate (Bottom left)
• The difference is the narros GoF, negative log likelihood 

ratio (Bottom right)
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Results of unbinned and binned 
fitting
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Determination of the a priori 
likelihood P(s)

• We want to elucidate the nature of P(s). Bayes’ 
theorem applies for two problems. One with fixed 
s=s*, and the other where the data contain a mixture 
of proper lifetimes distributed according to P(s). 
This case also results in the same Bayes’ equations. 
For the fixed parameter case, which is where 
Bayesianism comes in, the equation below should 
be treated as an OR of the possible values and P(s) 
is the value of P(s) at the true value of s(=s*).

• For the case where data is a mixture of proper 
lifetimes, the equation below is an AND over all the 
possible values of s.

• Since P(c) is given, P(s) can be inferred.
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Determine of the a priori 
likelihood P(s)

• One can write the following equation

• As n → ∞, P(s|cn) will tend to a delta function. 
However in this limit, the ratio P(cn|s)/P(cn) will 
tend to unity at s=s*, if the fit is good, since the 
data pdf and the theory pdf will be identical to each 
other. The only way out of this is to allow P(s)  to 
depend on n and let P(s) →δ(s-s*) as n → ∞. We 
can see this further in the equation

• As n → ∞, P(c) will have the form P(c|s*), if it fits 
theory and so, P(s) → δ(s-s*) . So we should write 
P(s) as Pn(s). We are using posterior information to 
deduce priors. This leads to a re-write of Bayes’
theorem as follows.
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Rewriting Bayes’ theorem 
equations

The recursive chain rule now becomes

i.e Likelihood ratios multiply.
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An ansatz for Pn(s)

• The expression                                can be thought 
of as the theoretical prediction for P(c) and the PDE 
can be thought of as the experimental measurement 
of P©. Then one can write 

• LR,n(s) cannot be unity in general, due to statistical 
fluctuations. If one takes the view that Pn(s) is the 
value of the distribution of Pn(s) at s=s* , s* being 
the true value and unknown, then Pn(s) is constant 
and the solution is
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Determination of a priori 
likelihoods

• This is the value of the Pn(s) at s=s*.  This is all that 
is needed for use in Bayes’ theorem. Then one can 
substitute this into Bayes’ theorem equations and 
get

• P(s|cn) is the a posteriori likelihood for s, and is 
independent of P(c) data!. We get the ``Frequentisit 
expression”.

• Notice it is possible to derive the expression only 

because of our use of the PDE. It would be 
dimensionally impossible to get the expression 
otherwise.
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Ansatz for  the a priori likelihood 
distribution

• What follows is not rigorously needed for Bayes’ 
equations. We include it to get more physical 
insight into what is going on. 

• We can then ask, what can one say at this stage 
about the distribution Pn(s)? All we know further is 
that it integrates to unity. Then the simplest 
function one can write for Pn(s)  is a step function 
θ(s|µ), where µ is the mean value of the step 
function and is totally unknown. s* has to be in the 
interval [s1,s2].

• This step function is narrower than the a posteriori 
likelihood distribution P(s|cn)! But we do not know 
µ, so no problem. (Explain)
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Width of a posterior likelihood vs 
step function.
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Bootstrap of the a posteriori 
distribution
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Bootstrap of the a posteriori 
distribution
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Bootstrap of the a posteriori 
distribution
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Bootstrap of the a posteriori 
distribution

• Also we can identify the projection along the s axis 
of the distribution as P(s|cn) ≡ g(s)/2λ,  which 
completes the bootstrap. The final result–
Frequentist formulas are correct. The a priori 
likelihood and Bayes theorem have ben used to 
rigorously derive the a posteriori pdf’s . Having 
served their function, the a priori likelihood is no 
longer needed! (Grin on the face of the Cheshire 
cat).
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Towards an analytic theory of the 
goodness of fit measure

• Am working on it. Go into Hypercube . PDE’s 
become easier.
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Conclusions

• A goodness of fit measure for unbinned likelihood 
fits now exists. It results from demanding 
invariances of the measure under variable 
transformations and feeding in data into Bayes’ 
theorem. 

• A priori likelihoods can be calculated. They are 
shown to depend on the amount of data. The a prior 
likelihood is the value of a distribution at the true 
value of the parameter. As statistics become large, 
this tends to infinity and the a priori distribution as 
well as the a posterior distribtuion tend towards 
delta functions.

• Implications for Bayesianism
» Bayes theorem lives.
» The practice of guessing a priori likelihoods, degree 

of belief etc collectively entitled Bayesianism is no 
longer needed.

» Frequentist formulae are correct.  If you accept the 
conclusions of this paper, the word frequentist 
(invented to indicate “Not Bayesian” can also be 
made obsolete.

• We have worked in one dimension only, but the 
method is valid for multi-dimensions
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Conclusions

• The formula for the dimensions of the step function 
will have to be modified thus

• As a by-product, we have introduced a method of 
iteratively determining the local smoothing factor, 
that is fast.
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Applications to Binned 
likelihoods

• Consider the case where we have one bin with a 
large number of events c. The expected value of the 
number of events is s. Then Gaussian probability 
yields

• With 

• How many think χ2 is the negative-log of a 
Gaussian Likelihood? What about the log of the 
denominator?

• Work with likelihood ratios and the PDE for the 
data in that bin!
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Applications to Binned
likelihoods

• Over many independent bins, this Likelihood ratio 
becomes the product over individual bins.

• For a good fit, one can write 

• Where εi are small. Then 

• Leading to 
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