
Practical CVS Tutorial

Stephen Soltesz

August 9, 2004

The purpose of this tutorial is to provide practical examples of how to use CVS during a typical source
development cycle. The complexity of the CVS interface and underlying structure tends to prevent casual
use of the system and prevents us from taking full advantage of the multi-user, parallel development features.
With the examples provided in this tutorial, it will be possible to use CVS as just another tool, simplifying
back porting bug fixes, maintainence of released packages, and safely going about large scale code changes
(such as a platform port, architectural changes, or adding experimental code). Those using CVS after this
tutorial will be able to enjoy some of its more mysterious benefits with as little trouble as possible.

Being a tutorial, or ’how to’, only necessary procedures are provided. Those wishing to understand the
nuance, history, and detail of CVS are invited to read the manual.

1 The Environment

In the beginning there is nothing. No package, no directories, no source, nothing.
First, CVS needs a directory in which to create a repository. The repository is a special directory

managed by CVS that will hold all files you want CVS to manage, as well as all changes made to these
files. The directory may be reached through your local filesystem or remotely via ssh. In both cases, the
environment variable CVSROOT must be set to specify the repository location.

If the repository is accessable through the filesystem, CVSROOT maybe set to the absolute path to the CVS

directory. For instance, a workstation in the UT Computer Science lab using the LoCI CVS repository
could set CVSROOT as:

export CVSROOT=/cvs/homes/

However, for remote access from laptops or non-NFS mounted workstations, a different variation makes
this possible via SSH.

export CVSROOT=:ext:username @enterprise.cs.utk.edu:/cvs/homes
export CVS RSH=ssh

Be sure to replace username with your username. To experiment on your own and become more com-
fortable with the CVS commands, you may set CVSROOT to a directory in your $HOME area without any
danger of breaking a shared repository. Once you have chosen and set CVSROOT, run cvs init to initialize
the repository. This needs to be done only once, but running the command multiple times will not hurt
anything.

2 Adding a package to your CVS repository

If you have write permission to your CVSROOT, you may add a module to the CVS repository using cvs
import. This operation is illustrated figure 1. (A CVS module is another word for a source package name.

1

For instance, ”ibp”, ”lors”, ”libexnode” are all examples of modules currently in the LoCI CVS repository.
”Module name” or ”package name” may be used interchangeably.)

CVS Repository for the lilprogram module

Add a module and a group of files to the CVS repository

Head

cvs import lilprogram loci lilprogram_0_0

/lilprogram_0_0

Figure 1: Import (legend is available page 9)

CVS Repository for the lilprogram module

Checkout the content of the lilprogram from CVS

/lilprogram_0_0 Head

cvs checkout lilprogram

Figure 2: Checkout

UNIX> cvs import <package name> <vendor tag> <symbolic tagname>

The vendor tag is not important for now. But you must have something in its place.
CVS does not allow tag names to contain any spaces, dashes, or periods. This is unfortunate, because we

are used to naming packages with dashes and periods, lors-0.80, for example. However, this name would
become lors 0 80, if it were to be used as a tag name.

From the PWD of the package you wish to import into CVS (not below the directory; in the directory),
run the import command.

UNIX> cat source.c
#include <stdio.h>
int main()
{

printf("Hello broccoli.\n");
}
UNIX> cvs import lilprogram loci lilprogram_0_0
N lilprogram/source.c

No conflicts created by this import

In this example, I have a single C file named source.c. CVS prepends the package name to each file or
directory imported. The ’N’ signifies that this file is new. And, assuming you’ve not chosen a package name
that is already in the CVS repository, the command will exit without an error.

3 Retrieving a module from CVS

To begin working from CVS you must retrieve the code you just imported by running cvs checkout. This
operation is illustrated figure 2. Move to a directory where you wish to place the working directory of your
CVS package.

UNIX> cvs checkout lilprogram
cvs checkout: Updating lilprogram
U lilprogram/source.c

2

In this example, CVS creates a directory named lilprogram, and populates it with source.c. The ’U’
means CVS has updated this file. You may now change to the new directory and begin editing and saving
changes.

4 Updating your working directory and Committing changes

Once you modify and save your source files, you will wish to commit them back to the CVS repository
eventually. Before doing this, it is important to run cvs update. This operation is illustrated figure 3.

When you are working with more than one developer, they may have committed changes since the last
time you checked out or updated your working directory. Update will first look in the CVS repository and
compare your files to those in CVS. If there have been additions committed by others, then CVS brings
the files in your working directory up to date with the content of the repository. If you try to commit your
changes before updating, CVS will warn you if your code is not up to date with the code in the repository.
But, updating first saves you a step and allows you to verify that your code still works with the updates of
others.

Compare user’s working directory to CVS repository
Bring working directory up to date if necessary

CVS Repository for the lilprogram module

Head

cvs update

/lilprogram_0_0

compare

update

Figure 3: Compare and Update

Commit changes made in the working directory to CVS repository

Differences

CVS Repository for the lilprogram module

/lilprogram_0_0

cvs commit

1 Head

Figure 4: Commit

In my lilprogram, I realize that broccoli is not a friendly vegetable, and I would rather say ”Go away”
than ”Hello”. I make this change, and run cvs update.

UNIX> cvs update
cvs update: Updating .
M source.c

The ’M’ tells me that source.c was modified by me and no other changes were made by anyone else. It
is now safe to commit the changes. This operation is illustrated figure 4.

UNIX> cvs commit source.c
Checking in source.c;
/Users/soltesz/cvsroot/example/source.c,v <-- source.c
new revision: 1.2; previous revision: 1.1
done

This commit introduces the first revision in the history of source.c in the main branch.

5 Branching and Tagging

So far, we have assumed that there is only one branch in CVS, and every checkout, update or commit
operates on the most current revision in that branch (also known as the ”head” of the branch). One of the

3

strengths of CVS is its ability to manage independent, parallel development branches within a single module
(or package).

Create a branch called lilprogram_0_1 in the CVS repository

CVS Repository for the lilprogram module

1 Head

Head

cvs rtag −b lilprogram_0_1 lilprogram

/lilprogram_0_0

/lilprogram_0_0

Figure 5: Create a new development branch.

Bring user’s working directory up to date with main branch

Bring user’s directory up to date with branch lilprogram_0_1

CVS Repository for the lilprogram module

/lilprogram_0_0 1 Head

Head/lilprogram_0_1

cvs update −A

cvs update −r lilprogram_0_1

Figure 6: Update user’s directory in function of
the choosen development branch.

Examples when branching the versions of a package may be beneficial are at the time of a package release,
during code porting, or when experimental features are added that may be unstable or otherwise unsuitable
for the main branch. For releases, development can continue on the main branch, but if several weeks later
bugs are discovered in the release, it may be difficult to recreate a new release and add the bug fixes in the
CVS repository. As for porting and experimental features, once the new code is stable, it can be brought
back into the main branch.

The important point to recognize is that release maintenance and experimental development can be done
inside and with the assistance of CVS, rather than outside of CVS.

To have an understanding of what happens when a branch is created in CVS, imagine that a new
directory is created in the repository and a copy is made of the main branch into this new directory. The
resulting two directories are entirely independent of one another. Changes committed to one will not show
up in the other unless you ask CVS to do this.

This procedure is identical to what you would end up doing if you were adding a fix to a bug in a
release available only in the distributed tar.gz. You would unpack the archive and add your fixes, entirely
independent of the CVS repository. When you do this, you must now return to the CVS repository and
make the fixes or changes a second time to commit them. The difference is, of course, that CVS could
manage the separate directories and releases for you, allowing you to have a single working directory for all
of these tasks if you wish.

cvs rtag expects the module name and the name of the branch you are creating. Because the branch
name is a tag, the same rules for apply to branches as apply to tag names.

If I wished to create a branch in the lilprogram to allow me to work on translating the message I would
do this (illustrated figure 5):

UNIX> cvs rtag -b lilprogram_0_1 lilprogram
cvs rtag: Tagging lilprogram

After the branch command, there are two branch heads in the repository. At this moment, they contain
the same information. However, each branch is now independent of the other (See illustration figure 6).

Once a branch has been created I can make my working directory mirror either branch using cvs update.
In the first example, the new branch is brought into the user’s working directory. This step is necessary

4

Tag the working directory with the name ’liltag_0_0’

CVS Repository for the lilprogram module

1 2 Head

Head/lilprogram_0_1

/lilprogram_0_0

cvs tag liltag_0_0

Figure 7: Tag the working directory.

1 2

3

4

Head

Head/lilprogram_0_0

/lilprogram_0_1

cvs tag liltag_0_0

cvs tag liltag_0_0

Bring working directory up to date with head of main branch

Merge working directory with differences from lilprogram_0_1 branch

Commit combination to the head of main branch

CVS Repository for the lilprogram module

cvs tag liltag_0_0

Figure 8: Update, merge and commit.

before you can commit changes or additions to this branch. Now you may update and commit and CVS

will know that you are working on the lilprogram 0 1 branch.

UNIX> cvs update -r lilprogram_0_1
cvs update: Updating .
UNIX> cvs status source.c
cvs status source.c
===
File: source.c Status: Up-to-date

Working revision: 1.2 Wed Jun 4 00:00:21 2003
Repository revision: 1.2 /Users/soltesz/cvsroot/lilprogram/source.c,v
Sticky Tag: lilprogram_0_1 (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

The ’Sticky Tag’ is lilprogram 0 1, showing that it is in fact from the lilprogram 0 1 branch.
To revert to the main branch:

UNIX> cvs update -A
cvs update: Updating .
UNIX> cvs status source.c
===
File: source.c Status: Up-to-date

Working revision: 1.2 Wed Jun 4 00:05:16 2003
Repository revision: 1.2 /Users/soltesz/cvsroot/lilprogram/source.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

The ’Sticky Tag’ is now ’none’, which is appropriate for the head of the main branch.
Using cvs update -A, files in your working directory will be updated or removed when needed. As long

5

as you have committed any changes you’ve made to the other branch, nothing will be lost.
A user may also assign symbolic Tags to any revision in the CVS repository. Tags are static pointers,

while branches are functional development trees. Tags can be turned into branches.
My second committed change will be to replace broccoli with celery.

UNIX> cat source.c
#include <stdio.h>
int main()
{

printf("Go away celery.\n");
}
UNIX> cvs commit
\$ cvs ci source.c
Checking in source.c;
/Users/soltesz/cvsroot/lilprogram/source.c,v <-- source.c
new revision: 1.3; previous revision: 1.2
done
UNIX> cvs tag liltag_0_0
cvs tag: Tagging .
T source.c

The head of the main branch is now different from the head of the lilprogram 0 1 branch. I can verify
this by updating my working directory to the lilprogram 0 1 branch and checking source.c (see also figure 7).

UNIX> cvs update -r lilprogram_0_1
cvs update: Updating .
U source.c
UNIX> cat source.c
#include <stdio.h>
int main()
{

printf("Go away broccoli.\n");
}

6 Merging Branches

In the lilprogram 0 1 branch, I will translate my message to German, and commit this change.

UNIX> cat source.c
#include <stdio.h>
int main()
{

printf("Gehen brokkoli weg.\n");
}
UNIX> cvs commit source.c
Checking in source.c;
/Users/soltesz/cvsroot/lilprogram/source.c,v <-- source.c
new revision: 1.2.2.1; previous revision: 1.2
done

While there may be more than one branch, it may ultimately be desirable to bring these branches back
together. For instance, if the branch held the code needed to run on windows, this branch could be merged

6

with the main branch, and any conflicts resolved.
To do this, make sure your working directory is the head of the main branch (or which ever branch you’re

merging into). Using cvs update -j <branchname>, where branchname is the name used during the ’rtag’
command (see figure 8). Where there are conflicts CVS will print a warning, and surround the differences
in the file with identifying marks.

If I wish to merge the branches of the lilprogram, this is the message and content of source.c:

UNIX> cvs update -A
cvs update: Updating .
U source.c
UNIX> cvs update -j lilprogram_0_1
cvs update: Updating .
RCS file: /Users/soltesz/cvsroot/lilprogram/source.c,v
retrieving revision 1.2
retrieving revision 1.2.2.1
Merging differences between 1.2 and 1.2.2.1 into source.c
rcsmerge: warning: conflicts during merge
UNIX> cat source.c
#include <stdio.h>
int main()
{
<<<<<<< source.c

printf("Go away celery.\n");
=======

printf("Gehen brokkoli weg.\n");
>>>>>>> 1.2.2.1
}

It is the user’s responsibility to resolve these conflicts before committing the file back to the main branch.
In this example, I might make the message printed conditional on a command line argument or simply
combine the messages into a single print statement.

7 Extra Good Stuff

7.1 add

After an import, or just in the course of development, there may be new files introduced to the project. To
add a single file to the module in the CVS repository you can use cvs add, and next cvs commit to add
the file permanently.

UNIX> cvs add header.h
cvs add: scheduling file ‘header.h’ for addition
cvs add: use ’cvs commit’ to add this file permanently

UNIX> cvs commit header.h
RCS file: /Users/soltesz/cvsroot/lilprogram/header.h,v
done
Checking in header.h;
/Users/soltesz/cvsroot/lilprogram/header.h,v <-- header.h
initial revision: 1.1
done

7

7.2 remove

The reverse case is when a file has outlived its usefulness and is no longer relevant or needed by the other
source files. In these cases we can remove the file from the CVS repository with cvs remove. First remove
the file, then tell CVS it has been removed.

UNIX> rm header.h
UNIX> cvs remove header.h
cvs remove: scheduling ‘header.h’ for removal
cvs remove: use ’cvs commit’ to remove this file permanently

To commit the change, run cvs commit.

7.3 diff

Sometimes after running cvs update and before you commit your changes, a file shows up as modified, but
you don’t remember what changes were made. In this case, you may examine the differences between your
copy and the version in CVS using the ’diff’ command. For instance, if I added a print statement to source.c
and forgot, I could run cvs diff source.c and see what was added.

UNIX> cvs diff source.c
Index: source.c
===
RCS file: /Users/soltesz/cvsroot/lilprogram/source.c,v
retrieving revision 1.3
diff -r1.3 source.c
10a11
>
27a29,30
>
> fprintf(stderr, "Hello World\n", s);

7.4 export

The code is ready for distribution. All bugs are fixed and the build process is perfect.
If we just tar up the CVS working directory, we will have all the extra files from your testing and the

CVS directories which don’t really belong in a polished distribution. To have a clean export of the CVS

repository without the extra cruft, cvs export does the job.
cvs export is like checkout, except it does not create a CVS working directory, only the source files.
From our example earlier, if I wished to create a lilprogram distribution of the german tranlation, I could

do the following:

UNIX> cvs export -r lilprogram_0_1 lilprogram
cvs export: Updating lilprogram
U lilprogram/source.c

This version contains only the German translation and none of the extra CVS directories are included.
annotate

You’re looking at the code, and discover a bug. A real jaw-dropper. ”Who would write such a piece of
code? and commit it to the repository? It couldn’t have been me!”

Well, with cvs annotate you can answer this question easily. The output from annotate includes the
username who last committed each line of a source file.

8

UNIX> cvs annotate source.c
Annotations for source.c

1.1 (soltesz 04-Jun-03): #include <stdio.h>
1.1 (soltesz 04-Jun-03): int main()
1.1 (soltesz 04-Jun-03): {
1.3 (soltesz 04-Jun-03): printf("Go away celery.\n");
1.1 (soltesz 04-Jun-03): }

This is a double edged sword of course. So be nice, lest it is you who commit the next bug :-)

8 Conclusion

If there are few things to remember here they are. Do not forget to update your working directory before
starting to work on a project, and never forget to update again before commiting your changes. Now you
feel comfortable with CVS ? Ok, here they are few shortcuts. checkout can be abbreviated by co, update
by upd, and commit by ci.

Useful link(s)

• A quick reference card about CVS is available here: http://tnerual.eriogerg.free.fr/cvs.html

User’s working directory

Head of Branch

Commit Point

Branch Point

Root of a CVS Branch

9

