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Abstract

We search for the Higgs Boson in 2.4 fb~! using the process ZH — [T17bb
in both ee and pp channels. Since the previous 1 fb~! analysis we have de-
veloped looser lepton identification by making use of a secondary Z selection
trigger path. We correct the two candidate Higgs jets with an Artificial Neu-
ral Network which assigns K to the jets according to their Er projections and
relative ¢. To maintain signal efficiency and improve signal discrimination, we
employ an additional neural network trained to discriminate event kinematics of
Z H compared to the main Z + jets background and the kinematically different
tt background. We calculate a 95% confidence level upper limit of 11.8 times the
Standard Model prediction for a Higgs Boson mass of 115 GeV/c? and observe
a limit of 11.6 x SM.

1 Introduction

The search for the Higgs boson in the standard model expected ZH — [T1~bb process,
where [ can be an electron or a muon, has a small cross-section compared with ZH —
vbb and WH — [Tvbb. However, it is the best constrained of the three processes since
the final state particles are all measured, and there is both a Z mass resonance in the
dilepton invariant mass distribution and a H mass resonance in the dijet invariant mass
distribution. Further, any imbalance of calorimeter energy in the transverse direction
K+ can be attributed mainly to downward fluctuations in the jet energies.

In this search we update the 1 fb™! analysis described in Ref. [I]. To select ZH
events we first identify a high Pr electron or muon, then we require a second lepton,
of the same flavor, such that the reconstructed invariant mass of the two leptons is
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2 2 EVENT SELECTION

consistent with that of a Z boson. While we don’t explicitly search for taus, we retain
in our signal region Higgs events produced in association with Z — 77. Next we
identify events with two or more high Er jets. We correct the jet energies by fitting
for their most likely energy loss by utilizing the direction and magnitude of the K., as
well as its transverse projection onto the jets. This correction improves the resolution
for identifying dijet resonances. Once the jets are corrected, the events have the same
kinematic selection as our final signal region, and we use them to validate our analysis
technique as a high statistics control region. Next we divide events into those with
one tight secvtx b-tag and two loose secvtx b-tags. The final selected events are binned
according to a 2D NN which is trained to simultaneously separate ZH from tt, and ZH
from Z+jets. Using the expected number of background events and their uncertainties,
and the final output of the data, we are able to place an upper limit on the cross-section
of ZH that could be contributing.

Many features of this analysis are the same as the previous analysis. The main dif-
ferences are outlined here. The Monte Carlo simulation is updated and now includes
an estimate of the effect of extra interactions in the simulation. We now model Z+jets
processes using Alpgen version 2 Monte Carlo, which is expected to more correctly
add in the hard and soft radiation effects which produce the jets. We have added an
additional trigger called Z_NOTRACK which selects events with two high Er electro-
magnetic deposits in the central or plug regions. This complements the standard high
Pr electron trigger which requires a track pointing to a central electromagnetic deposit.
We make use of the Z_ NOTRACK trigger by defining additional lepton categories with
less restrictive selection criteria, therefore increasing Z acceptance. The dijet-F, cor-
rections from the previous analysisare updated with new MC and with an improved set
of variables. Our final NN discriminant is trained for a Higgs mass of 120 GeV/c? and
optimized to produce the best error in separating backgrounds. Kinematic selection
of jets and b-tagging remain the same in this analysis. The basics of the NN design
also remain the same although we allow the NNs to choose a new set of optimal input
variables. Since the new Alpgen V2 MC better models the kinematics of Z+jets, we
allow some variables to enter into the NN which were not previously used in the 1 fb~!
analysis due to poor modeling.

2 Event Selection

To identify Z boson candidates we search for high Pr lepton pairs with combined
invariant mass between 76 GeV/c* and 106 GeV/c*. Our muon selection remains
unchanged from the 1 fb=! analysis. We select one tight muon from the high Pr CMX
or CMUP trigger path with Pr > 18 GeV//¢ . The second muon is required to have
Pr > 10 GeV/c and is not required to leave hits in any muon chambers.

For electrons we accept events from the high Er Central Electron Trigger path in
which we reconstruct one central electron with Er > 18 GeV and an associated track
with Pr > 9 GeV/c. The second electron is required to have Er > 10 GeV if central,



Event Selection
2 or more Cone 0.4 jets L5 Er > 15 GeV, |n| < 2
1 or more jets with L5 Er > 25 GeV
Additional b-tagging selection for signal region
2 or more loose SECVTX tags
If not found 1 or more tight SECVTX tags (with b-tagged jet E; > 25)

Table 1: Summary of event selection.

and Ep > 18 GeV if in the plug. We also accept events where the second electron is
reconstructed from a high Pr track pointing to one of the gaps between calorimeter
wedges. For Z_NOTRACK triggered events we require two electron candidates with
ET Z 18 GeV'.

After identifying a Z candidates, we apply additional selection, as in Table 1.

The agreement of our preselection is shown in Table 2. We divide our event sample
into four categories according to %. The final tag categories are Double Tag High,
Single Tag High, Double Tag Low and Single Tag Low.

[ Event Totals |

Source Z Z + 1 jet preTag
ZH 3.5 3.5 2.8
tt 54.7 54.3 45.4
WWwW 82.1 26.0 5.5
WZ 189.9 144.7 84.9
77 206.3 135.5 81.7
Z — 71T 158.7 28.5 4.3
Z+jets (bb) 1540.6 836.9 243.9
Z+jets (cc) 3363.1 1643.3 474.1
mistags / Z + jets |399711.0 60352.1  7140.8
fakes 8253.0 2697.2 591.6
Total Background | 413563.0 65921.8  8674.7
Data 420900 70228 9035

Table 2: Preselection event totals.



4 4 BACKGROUND MODELING OF DATA

L5 Jet 1 ET
L5 Jet 2 ET
Jet 1 n
Jet 2
Ag(jetl, jet2)
Ap(Bor, jetl)
Ap(Bor, jet2)
Jet 1 Projection onto Ky
Jet 2 Projection onto K.
K+ magnitude

Table 3: Variables used to correct jet energies to parton level.

3 Jet Energy Resolution Corrections

We correct jet energies with the E. direction and magnitude, and projections onto the
jet directions as in the procedure in Ref. [2].

Corrections were redone to use the new MC simulation. In order to sample a wide
range of jet Ers in order to prevent overcorrecting low Er jets, we train over Higgs
masses (50 - 200 GeV, in 10 GeV steps). We configure the NN slightly differently than
previously. We use relative A¢ between jets and K, direction rather than absolute ¢.
We also use a signed K, projection to correct jets, rather than an unsigned projection.
This has the advantage of not applying the same correction to jets both pointed in
the opposite direction and the same direction as the K. direction which should reduce
mis-reconstruction of non-Z backgrounds like ¢f.

The variables used to train the dijet mass correction NN are shown in Table 3. The
NN corrections provide major improvement with respect to the Level 5 corrections in
terms of the jet energy resolution, as well as a better estimate of the parton Pr. This
leads to a truer and narrower reconstructed dijet mass.

4 Background modeling of data

The background consists of Z + heavy flavor jets (b or ¢ jets), Z + incorrectly tagged
light flavor jets, tt, ZZ, ZW, and events with fake leptons.

To model the Z + jets, tt, ZZ and ZW backgrounds we use Alpgen+Pythia MC.
We model Z — pup fake events using like sign di-muon events and employ the data
based fake method described in Ref. [3] to estimate the Z — ee fake background.

The Z + tagged light flavor jets (misTag) background is modeled using the mistag
matrix method described in Ref. [1].



NN Inputs
jet 1 E}
AR(Z,jj)
jet 2 Ey
7 P,

M;;
Missing E;

MET projected onto jet 1
Number of Tight Jets
HT1
AR(jetl, jet2)
MET projected onto jet 2
sphericity
Mass Z+jj

Table 4: 2D NN inputs.

5 Neural Network Signal-Background discriminant

We develop a 2D NN using the same techniques as the 1 fb~! analysis. We consider
29 input variables, after dijet energy corrections are applied, and iteratively add in the
best variables until adding additional variables does not improve the training error.

Our final NN configuration uses the inputs listed in Table 4. Projections of the NN
output are shown in Figures 1 and 2 for preTag data and MC.

6 Results

After applying b-tagging our final event totals are shown in tables 5 and 6. Since
the event yields in data agree with the events expected by our background model,
we do not find a significant excess in the counting experiment. The projected NN
output distributions for the signal regions are shown in Figures 3 through 10. Since
the cross-section for ZH is small, we do not expect a visible excess with this dataset,
and so we quantify the maximum allowed ZH contamination in the data. We use the
mclimit machinery for this, and do a binned fit of the 2D NN distribution, including
systematics. Table 6, Table 8, Figure 11 and Figure 12 show our expected limits
assuming no Higgs production, and our observed limits for ZH production in the data.
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Figure 1: Pre-Tag NN output projections.

Event Totals

H

Source Single Tag (high) Double Tag (high)
ZH 0.86 £ 0.07 0.45 £ 0.04
tt 11.36 £ 2.39 6.14 + 1.29
WW 0.11 £ 0.02 0.01 £0
WZ 2.37 £ 0.35 0.13 £ 0.02
77 6.31 £ 0.95 2.23 + 0.31
Z — 71T 0.03 £ 0.01 0+0
Z+jets (bb) 53.41 + 22.43 1341 + 5.5
Z+jets (cc) 25.67 + 10.78 1.92 + 0.79
mistags / Z + jets 84.21 4 36.21 2.11 + 0.93
fakes 13.5 £ 6.75 0.82 £ 0.41
Total Background 197.84 + 44.53 27.23 + 5.8
Data 205 24

Table 5: Event totals for single and double tag (high).
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Figure 2: Pre-Tag NN output projections with y < 0.25 in the Z+Jets vs. ZH projec-
tions and x > 0.75 in the ZH vs. tt projections.

[ Event Totals |

Source Single Tag (low) Double Tag (low)
ZH 0.14 & 0.01 0.07 + 0.01
tt 549 + 1.15 2.51 & 0.53
WW 0.06 + 0.01 0+0
WZ 0.63 £ 0.09 0.02 £+ 0
77 1.19 + 0.18 0.41 + 0.06
Z — 71T 0.05 4 0.02 0+0
Z+jets (bb) 11.15 4 4.68 2.8 £ 1.15
Z+jets (cc) 5.49 4 2.31 0.37 + 0.15
mistags / Z + jets 29.34 + 12.61 0.62 + 0.27
fakes 12.36 + 6.18 0.54 + 0.27
Total Background 65.89 4+ 15.03 7.33 + 1.33
Data 74 15

Table 6: Event totals for single and double tag (low).
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Figure 3: Single Tag (high) NN output projections.
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Figure 4: Single Tag (high) NN output projections with y < 0.1 in the Z+Jets vs. ZH
projections and x > 0.9 in the ZH vs. tf projections.

Expected Limits

Single Tag Double Tag Single Tag Double Tag Combined Combined
My (low) (low) (high) (high) (high only)  (low + high)
100 45.63 38.5 18.82 13.16 10.6 9.59
105 39.19 35.1 16.32 11.34 8.99 8.15
110 51.9 42.74 20.53 15.34 11.99 10.7
115 58.42 51.33 23.57 16.49 12.74 11.79
120 79.09 69.89 27.24 19.87 15.99 14.51
125 86.44 80.19 32.34 24.15 18.39 16.67
130 108.56 91 42.15 30.5 23.98 21.58
135 155.81 129.79 58.04 40.87 32.51 29.38
140 209.5 174.59 82.19 58.02 46.06 42.04
145 332.82 277.76 126.26 89.53 70.84 64.36
150 519.5 463.51 213.67 144.6 116.32 104.83

Table 7: Expected limits by each tag category and in combination.
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Figure 5: Double Tag (high) NN output projections.
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Figure 7: Single Tag (low) NN output projections.
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Figure 8: Single Tag (low) NN output projections with y < 0.1 in the Z+Jets vs. ZH
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Figure 9: Double Tag (low) NN output projections.
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Expected and Observed Limits

My | Expected © 17 Observed
100 9.59 T 34, 8.79
105 8.15 = 3% 8.02
110 | 107 + 391 10.62
115 | 11.79 * 4% 11.57
120 | 1451 & §S8 13.36
125 | 16.67 © 11 17.16
130 | 21.58 * 013 21.23
135 | 29.38 + [433 27.11
140 | 42.04 + B3 39.73
145 | 64.36 + 272 65.01
150 | 104.82 T 353 104.83

Table 8: Expected and observed limits.
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Figure 12: Expected limits for each of the individual channels and in combination.
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7 Conclusions

We have evaluated new limits with an updated dataset, 2.4 times larger than in the pre-
vious analysis. We have made use of new lepton categories to increase Z H acceptance.
In order to gain full sensitivity from our new lepton categories we have added two
additional tag categories which reduce the expected limit by ~ 10% when compared
to the high % channels alone.

We calculate 95% confidence level upper limits from 9.6 to 104.8 times the Standard
Model prediction for Higgs Boson masses between 100 GeV/c? and 150 GeV/c?. For
my = 115 GeV/c* the expected 95% confidence level upper limit is 11.8 times the
Standard Model prediction with an observed limit of 11.6.
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