Timing Studies for SAM getMetadata command

Tests to measure the capabilities of a v7_3_0 SAM dbserver were performed. These tests are documented in this note. This testing occurred on the CDF Phase I SAM farm worker nodes. To perform these tests, single CAF jobs were run on fncdf CondorCAF, a varying number of jobs sections were run with between 10 and 1000. These jobs used the SAM DB server user_int (v7_3_0) running on cdfsam05.fnal.gov. Table 1 lists the number of sections, type of test, start and stop times. During most of the tests there was no attempt to ensure that the getMetadata commands were synchronized between job sections; the python code for these tests is shown in appendix A. Two of the tests were designed to have at least the first getMetadata command in each section to occur at the same time; the python code for this test is in appendix B. It should be noted that in order to try to have the getMetadata commands to occur concurrently many of the job sections had to sleep for a significant period of time in order to account for the behaviour of the Condor job scheduler.

Table 1 List of SAM getMetadata tests performed
	
	Type of test
	# of job sections
	Submit time
	End time

	1
	getMetadata
	10
	Sun Aug 21 15:48:11 2005
	Sun Aug 21 16:08:53 2005

	2
	getMetadata
	100
	Sun Aug 21 20:25:02 2005
	Sun Aug 21 21:25:08 2005

	3
	getMetadata
	100
	Thu Sep 1 07:02:40 2005
	Thu Sep 1 07:42:44 2005

	4
	 getMetadata
	399
	Thu Sep 1 08:05:13 2005
	Thu Sep 1 10:24:17 2005

	5
	Concurrent getMetadata
	10-50 jobs
	Sun Sep 4 22:01:00 2005
	Mon Sep 5 00:54:00 2005

Test 1: – 10 CAF job sections running on Phase I farm nodes

This section presents the results from the tests reading the metadata from the integration database using the SAM DB server with 10 job sections running at once. There was a 10 second sleep between getMetadata commands.

[image: image1.png]Eniiss ool
number of get commands per minute | | e ot

AMS. o7z

60

50]

40]

30}

20]

10]

Underfiow o
Overflow
nfogral

200 40 60 80 100 120 140
duration of test (in min)

Figure 1 - Number getMetadata commands per minute. The plateau is an artifact of having 10 second sleep between getMetadata commands.The time during the test is along the x axis. There were 10 job sections running at once.

Figure one shows the number of getMetadata commands executed per minute Within a single job there is a 10 second wait between getMetadata commands. With 10 concurrent job sections running the maximum rate can be up to 60 jobs per minute as indicated by the plot.

[image: image2.png]Entries 1000
Mean 0.1675
AMS. 008071

600]

400]

200]

Underfiow o
Overflow
nfogral

%

10 20 30 40 50 60 70 80 90 100

command execution time in seconds

Figure 2 - getMetadata command execution time. Each command took a fraction of a second to complete. The spike in the first bin indicates that the DB server can clearly handle this load. Based on 10 job sections running at once.

[image: image3.png]Profile hist of cmd exec time vs cmd time during siress test | | ENtries. 1000
e e Tt I e ocee
ml | Meany 0.1675
[A RMs 4972
P e o

. s
£o i

3yg cme,execytion
sox o

%2 4 60 s 100 120 1o

time of get cmd during stress test (in min)

Figure 3 GetMetadata command execution time vs time. Time is measured from the start of the test. Figure 2 is the y axis projection of this figure. 100 jobs were submitted simultaneously. Based on 10 job sections running at once.
[image: image4.png]2

get metadata cmd exec time in sec

A NW s G DN ®©

Entries 1000

Meanx 9.082

Meany 0.1675

RS x as72

RS 008071
(] v 0
O B T
o o

Intogral

time of cmd during stress test (in minutes)

Figure 4 - Two dimensional distribution of getMetadata command execution time vs time during test. Figure 2 is the projection along the y axis. Based on 10 job sections running at once.
[image: image5.png]Command

300
251
200
151
100

Entries 1000
Mean 9164
AMS. a9
Underfiow o
Overflow

nfogral

207 40 60 80 100 120 140
time during stress test (in min)

Figure 5 - Estimation of the number of commands possible per minute for the getMetadata command. This is calculated by the reciprocal of the command execution time and number of commands per minute. Based on 10 job sections running at once

Test 2: – 100 CAF job sections running on Phase I farm nodes

This section presents the results from the tests reading the metadata from the integration database using the SAM DB server with 10 job sections running at once. There was a 10 second sleep between getMetadata commands.

[image: image6.png]Entries 10000
number of get commands per minute | | e 1821

AMS. 7547

5001 overtan 5
Bsgar

400]

300]

200]

100]

20 40 60 80 100 120 140
duration of test (in min)

Figure 6 - Number getMetadata commands per minute. The plateau is an artifact of having 10 second sleep between getMetadata commands. The time during the test is along the x axis. There were 100 job sections running at once.

Figure 6 shows the number of getMetadata commands executed per minute Within a single job there is a 10 second wait between getMetadata commands. With 100 concurrent job sections running the maximum rate can be up to 600 jobs per minute. The maximum possible is not quite reached. The rise time (left edge) of the plot is due to condor job scheduler. The next figure shows that the vast majority of the command occurred within a fraction of a second.
[image: image7.png]Entries 10000
Hoan 0ast4
— s Osass
Undertiow o
200 Overfiow
inegral

800
700(
600(
500(
400(
300
20(
10

10 20 30 40 50 60 70 80 90 100

command execution time in seconds

Figure 7 - getMetadata command execution time. Each command took a fraction of a second to complete. The spike in the first bin indicates that the DB server can clearly handle this load. Based on 100 job sections running at once.

[image: image8.png]Entries 10000
Mean 18.71
— 7 o4t

R 7547
RliSy 0638
Underfiow o

Overflow
Inisgral

|

-avg cmd execution time (in secs)
e o o o

40 60 80 100 120 140
time of get cmd during stress test (in min)

Figure 8 GetMetadata command execution time vs time. Time is measured from the start of the test. Figure 7 is the y axis projection of this figure. 100 jobs were submitted simultaneously. Based on 100 job sections running at once.
[image: image9.png]2

get metadata cmd exec time in sec

A NW s G DN ®©

Entries 10000

Meanx 18.21

Meany o441

RS x 7547

RS 06386
(] v)
0 [0000 |0
o o

Intogral

time of cmd during stress test (in minutes)

Figure 9 - Two dimensional distribution of getMetadata command execution time vs time during test. Figure 7 is the projection along the y axis. Based on 100 job sections running at once.
In looking at figures 6-9, one can see that once the number of commands per minute exceed ~ 450 getMetadata commands per minute the DB server appears to slow down. This may be due to the fact that during the time of these tests there were only 5 allowed concurrent connections into the ORACLE database. In addition there was a limit to the number of threads to ORACLE the db server had.

[image: image10.png]Entries 10000

1800]
1600]
1400]
1200]
1000]
800]
600]
400]
200]

Mean 1789
AMS. 8694
Underfiow o
Overflow o

nfogral 41450404

20

40

60 80 100 120 140
time during stress test (in min)

Figure 10 - Estimation of the number of commands possible per minute for the getMetadata command. This is calculated by the reciprocal of the command execution time and number of commands per minute. Based on 100 job sections running at once

Test 3: – 100 CAF job sections running on Phase I farm nodes

This section presents the results from the tests reading the metadata from the integration database using the SAM DB server with 100 job sections running at once. There was a 10 second sleep between getMetadata commands. The DB server and number of connections to the Integration Oracle database were upgraded between test 2 and test 3

[image: image11.png]Entries 10000
number of get commands per minute | | e 818

AMS. fxen

400]
350]
300]
250]
200]
150]
100]

50}

Underfiow o
Overflow
nfogral

20 40 60 80 100 120 140
duration of test (in min)

Figure 11 - Number getMetadata commands per minute. The plateau is an artifact of having 10 second sleep between getMetadata commands. The time during the test is along the x axis. There were 100 job sections running at once.

Figure 11 shows the number of getMetadata commands executed per minute Within a single job there is a 10 second wait between getMetadata commands. With 100 concurrent job sections running the maximum rate can be up to 600 jobs per minute. The maximum possible is not quite reached. The rise time (left edge) of the plot is due to condor job scheduler. The next figure shows that the vast majority of the command occurred within a fraction of a second.
[image: image12.png]Entries 10000
Mean 2078
AMS. 3344
5000} Underfiow °

Overflow
nfogral

% E 6 15 20 25 30 3 40 45 50

command execution time in seconds

Figure 12 - getMetadata command execution time. The overloading of the db server is beginning to become apparent from the appearance of the second peak. Based on 100 job sections running at once. The histogram title is incorrect.

[image: image13.png]get metadata cmd exec time in sec

Entries 10000
aanx se
eany
Riis x
s
o —
s
%
otgrat

2]

20]

1]

10]

R

%" 40 60 80 100 120 140

time of cmd during stress test (in minutes)

Figure 13 GetMetadata command execution time vs time. Time is measured from the start of the test. Figure 12 is the y axis projection of this figure. 100 jobs were submitted simultaneously. Based on 100 job sections running at once.
[image: image14.png]Entries 10000
Mean 1858
— 7 2123

|

R a2
RliSy 3778
Underfiow o
Overflow

Inisgral

-avg cmd execution time (in secs)

40 60 80 100 120 140
time of get cmd during stress test (in min)

Figure 14 - Profile distribution of getMetadata command execution time vs time during test. Figure 7 is the projection along the y axis. Based on 100 job sections running at once.
In looking at figures 11-14, one can see that once the number of commands per minute exceed ~ 300 getMetadata commands per minute the DB server appears to slow down

[image: image15.png]Command

e o
g8 8
k=2 3

bandwith (Abritray units)
°
9
5

°
o
2

Entries 10000
Mean 1856
AMS. 073
Underfiow o
Overflow o
nfogral

&

20

40

60 80 100 120 140

time during stress test (in min)

[image: image16.png]Entries 27316
Mean 0785

AMS. o8
Underfiow o
0.12] Overflow o

nfogral

g
]
5
§ od
8
<
=

% 10 20 30 40 50

'No. emds running at a time

]
H

8

3
EMZ
£
S

S

Figure 15 - Estimation of the number of commands possible per minute for the getMetadata command. This is calculated by the reciprocal of the command execution time and number of commands per minute. Based on 100 job sections running at once The left figure shows the command bandwidth as a ftn of time during the test and the right figure shows the bandwidth as a ftn of the number of commands running at once

Figure 15 shows that when the db server is over loaded the amount of commands that it can handle drops very quickly. Once away from the threshold the db server performance increases remarkably.

Test 4: – 399 CAF job sections running on Phase I farm nodes

This section presents the results from the tests reading the metadata from the integration database using the SAM DB server with 399 job sections running at once. There was a 10 second sleep between getMetadata commands.

[image: image17.png]Entries 39500
number of get commands per minute | | e s8.37

AMS. 765

400]
350]
300]
250{
200{
150]
100{

504

Underfiow o
Overflow
nfogral

20 40 60 80 100 120 ' 140

duration of test (in min)

Figure 16 - Number getMetadata commands per minute. The plateau is an artifact of having 10 second sleep between getMetadata commands. The time during the test is along the x axis. There were 100 job sections running at once.

Figure 16 shows the number of getMetadata commands executed per minute Within a single job there is a 10 second wait between getMetadata commands. With 399 concurrent job sections running the maximum rate can be up to 2394 jobs per minute. The maximum possible is not quite reached. The rise time (left edge) of the plot is due to condor job scheduler. The peak on the left edge of the plot indicates that the db server saturates and then reaches a plateau.

[image: image18.png]Entries 39500
o rar
s i
Unierton 5
Ovartow ssao
Disgia" s vserte

2500]

2000]

1500]

1000]

500

% A6 15 20 25 30 35 40 45 50

command execution time in seconds

Figure 17 - getMetadata command execution time. Based on 399 job sections running at once. The histogram title is incorrect.

[image: image19.png]Profle it of cmd exec time va cmd time during stress test | - [Eniries by
el | w07

Meany 2553
R 765
RliSy 2743
Underfiow 0

Overflow
Inisgral

avg cmd execution time (in secs)
©

time of get cmd during stress test (in min)

Figure 18 - Profile distribution of getMetadata command execution time vs time during test. Figure 7 is the projection along the y axis. Based on 100 job sections running at once.
[image: image20.png]|

Profile hist of cmd.

Avg cmd exec time (sec)
N e s oo N®

vs num of omds at once

Eniries
Mean
Meany
RS
RliSy
Underflow

Overflow
Iniegral

50

100

150 260 250
cmds running at a time

[image: image21.png]Graph

25

200

151

100

1000 2000 3000 4000 5000 6000 7000 800G 9000

Figure 19 GetMetadata command execution time vs number of commands executed running at once. Based on 399 job sections running at once. The number of commands running at once is shown by the right graph
In looking at figures 16-19, one can see that once the number of commands running at once exceeds ~ 40 commands; the DB server appears to slow down and the average execution time for the commands continues to increase. This can also be seen in the command bandwidth plots:

[image: image22.png]Entries 39500

Command
ean Ss4

— RS e

2 0.7 overtan H

z Bsgar

5

5 0.06]

$ o.05]

<

= 0.04]

H

£ 0.03]

2 0.02]

.01 L
% 20 40 60 80 100 120 140

time during stress test (in min)

[image: image23.png]Entries 1039471
Mean 1068
AMS. 8365
Underfiow o
Overflow o
nfogral

700 150 200 250

'No. emds running at a time

Figure 18 - Estimation of the number of commands possible per minute for the getMetadata command. This is calculated by the reciprocal of the command execution time and number of commands per minute. Based on 399 job sections running at once The left figure shows the command bandwidth as a ftn of time during the test and the right figure shows the bandwidth as a ftn of the number of commands running at once

Test 5: – Concurrent getMetadata commands

During these tests between 10 and ~50 getMetadata commands were run concurrently. The python scripts are located in appendix B. The tests were repeat four times for each (16 runs) to check the variability of the measurements.
[image: image24.png]

Figure 19 - Execution time for concurrent getMetadata commands

[image: image25.png]L

frrm |

Figure 20 - Execution time for concurrent getMetadata commands

[image: image26.png]egpeetetteds | [Lttt

Figure 21 - Execution time for concurrent getMetadata commands

[image: image27.png]secsy (1

g

R =2

go0l- g ws

£ . -
<

§ B

240) P

H t "

B I P B |
0 20 30 a0 50
Number of concurrent commands.

Figure 22 Avg getMetadata command execution vs number of running commands.

[image: image28.png]Suof [o

B ! E
$oof. o =
g CROE =
PR

) af -
60| ;?

w

o

e

number of concurrent cmds

10

The average command excution time for the runs is list here:

9 cmds mean = 24.958 RMS = 13.491

 10 cmds mean = 16.1136 RMS = 3.08689

 18 cmds mean = 36.716 RMS = 5.17959

 19 cmds mean = 23.21 RMS = 2.37592

 20 cmds mean = 26.325 RMS = 7.79163

 25 cmds mean = 39.3783 RMS = 5.31353

 27 cmds mean = 38.3153 RMS = 4.48081

 28 cmds mean = 35.127 RMS = 1.87646

 30 cmds mean = 37.7937 RMS = 2.3785

 45 cmds mean = 64.2827 RMS = 4.31231

 48 cmds mean = 108.282 RMS = 11.8142

 49 cmds mean = 112.72 RMS = 17.9912

Appendix A

Listing of get-metadata.py

#!/usr/bin/env sampy

#

#
 declare-metadata.py

#

script to do a declare of dummy metadata many times as a test.

#

import string

import sys

import os

import getopt

import commands

import time

import SAM

from Sam import sam

from SamFile.SamDataFile import SamDataFile

from SamException import SamExceptions

from SamStruct.SamBoolean import SamBoolean

from SamStruct.DbServantConnectionInfoList_v2 import DbServantConnectionInfoList_v2

import stat

from time import gmtime, strftime, localtime

#

first check that sam environment has been setup

#

job_start=time.time()

job_starttime=time.clock()

job_start_string = '%s' % strftime("%Y-%m-%d %H:%M:%S", localtime(job_start))

print 'Job get metadata started: %s ' % (job_start_string)

try:

sam2 = os.environ['SETUP_SAM']

except:

print "Error: sam not set. 'setup sam' before running me"

sys.exit(1)

dbservername = os.environ['SAM_DB_SERVER_NAME']

job_elapsed_time = 0

#sam_station=os.environ['SAM_STATION']

#sam_project=os.environ['SAM_PROJECT']

#sam_dataset=os.environ['SAM_DATASET']

#

parse the options

#

file_limit=5000

try:

optlist, args = getopt.getopt(sys.argv[1:], 'f', ['file_limit='])

except getopt.GetoptError, e:

sys.exit(1)

for key, value in optlist:

if key == '--file_limit':

file_limit=long(value)

print 'Number of metadata declares = %d' %(file_limit)

#

Establish create the bulk of the dummy metadata ====================

#

==

and here is the loop over the files

==

ifile = 0

caf_section = int(os.environ['CAF_SECTION'])

new_caf_section = caf_section

if caf_section > 200 :

new_caf_section = caf_section % 200

file_limit = 100

if caf_section > 200 and caf_section <= 400 :

ifile = 100

if caf_section > 400 and caf_section <= 600 :

ifile = 200

if caf_section > 600 and caf_section <= 800 :

ifile = 300

if caf_section > 800 and caf_section <= 1000 :

ifile = 400

caf_num = 10000*new_caf_section

file_number=1

while file_number <= file_limit:

create the dummy file name

 file_id_no = caf_num + file_number + ifile

filename = 'test_file_' + str(file_id_no)

build metadata

 metadata = {}

 file_number = file_number + 1

task_start=time.time()

starttime = time.time()

metadata = sam.getMetadata(fileName=filename)

stoptime=time.time()

elapsed_time = stoptime-starttime

starttime_string = '%s' %strftime("%Y%m%d %H%M%S",localtime(task_start))

print 'getMetadata %s %.3f %d' %(starttime_string,elapsed_time,len(metadata))

now sleep for 10 seconds

 time.sleep(10)

#

get the total elapsed time etc.

#

job_stop=time.time()

job_stoptime=time.time()

job_stoptime_string = '%s' %strftime("%Y-%m-%d %H:%M:%S",localtime(job_stop))

job_elapsed_time = job_stop-job_start

print 'get-metadata finished at %s - it took %.3f secs to run python script ' %(job_stoptime_string,job_elapsed_time)

Appendix B

Listing of get-metadata-blast.py

#!/usr/bin/env sampy

#

#
 declare-metadata.py

#

script to do a declare of dummy metadata many times as a test.

#

import string

import sys

import os

import getopt

import commands

import time

import SAM

from Sam import sam

from SamFile.SamDataFile import SamDataFile

from SamException import SamExceptions

from SamStruct.SamBoolean import SamBoolean

from SamStruct.DbServantConnectionInfoList_v2 import DbServantConnectionInfoList_v2

import stat

from time import gmtime, strftime, localtime

#

first check that sam environment has been setup

#

job_start=time.time()

job_starttime=time.clock()

job_start_string = '%s' % strftime("%Y-%m-%d %H:%M:%S", localtime(job_start))

print 'Job get metadata started: %s ' % (job_start_string)

try:

sam2 = os.environ['SETUP_SAM']

except:

print "Error: sam not set. 'setup sam' before running me"

sys.exit(1)

dbservername = os.environ['SAM_DB_SERVER_NAME']

job_elapsed_time = 0

#sam_station=os.environ['SAM_STATION']

#sam_project=os.environ['SAM_PROJECT']

#sam_dataset=os.environ['SAM_DATASET']

#

parse the options

#

file_limit=5000

try:

optlist, args = getopt.getopt(sys.argv[1:], 'f', ['file_limit='])

except getopt.GetoptError, e:

sys.exit(1)

for key, value in optlist:

if key == '--file_limit':

file_limit=long(value)

print 'Number of metadata declares = %d' %(file_limit)

#

Establish create the bulk of the dummy metadata ====================

#

==

and here is the loop over the files

==

now = time.time()

min = int(strftime("%M",localtime(now)))

sec = int(strftime("%S",localtime(now)))

if min < 50:

sleep_sec = (60-sec) + 60*(49-min)

else:

sleep_sec = (60-sec) + 60*(79-min)

#sleep_sec = (60-sec) + 60*(79-min)

print ' now = %s sleep_sec = %d' %(strftime("%H:%M:%S",localtime(now)),sleep_sec)

time.sleep(sleep_sec)

ifile = 0

caf_section = int(os.environ['CAF_SECTION'])

new_caf_section = caf_section

if caf_section > 200 :

new_caf_section = caf_section % 200

file_limit = 100

if caf_section > 200 and caf_section <= 400 :

ifile = 100

if caf_section > 400 and caf_section <= 600 :

ifile = 200

if caf_section > 600 and caf_section <= 800 :

ifile = 300

if caf_section > 800 and caf_section <= 1000 :

ifile = 400

caf_num = 10000*new_caf_section

file_number=1

while file_number <= file_limit:

create the dummy file name

 file_id_no = caf_num + file_number + ifile

filename = 'test_file_' + str(file_id_no)

build metadata

 metadata = {}

 file_number = file_number + 1

task_start=time.time()

starttime = time.time()

metadata = sam.getMetadata(fileName=filename)

stoptime=time.time()

elapsed_time = stoptime-starttime

starttime_string = '%s' %strftime("%Y%m%d %H%M%S",localtime(task_start))

print 'getMetadata %s %.3f %d' %(starttime_string,elapsed_time,len(metadata))

now sleep for 10 seconds

 time.sleep(10)

#

get the total elapsed time etc.

#

job_stop=time.time()

job_stoptime=time.time()

job_stoptime_string = '%s' %strftime("%Y-%m-%d %H:%M:%S",localtime(job_stop))

job_elapsed_time = job_stop-job_start

print 'get-metadata finished at %s - it took %.3f secs to run python script ' %(job_stoptime_string,job_elapsed_time)

