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The Pipelined Processor

1 INTRODUCTION

Previously we designed a processor that executes a subset of the MIPS instruction
set. This previous processor executed an instruction in an average of 4.1 cycles. While
the number of cycles per instruction (CPI) is acceptable, we now look at implementing
a pipelined processor in an attempt to increase the performance. This performance
increase is due solely to the change in how the processor executes each instruction. For
the nonpipelined processor, one instruction is fetch and processed to completion before
the next instruction is obtained from memory. When doing sequential processing we
allow some parts of the processor to remain idle. As we move to a pipelined case
we have multiple instructions executing at the same time in different parts of the
processor.

For example consider an assembly line. In sequential processing we start and
complete one car before beginning the next. To increase the number of cars coming
off of the assembly line, industry has implemented a version of a pipeline. One car
has its frame assembled. Another has its motor installed while a third is equipped
with tires. Still another has the interior assembled. In this way, four cars are being
processed at any given instant in time. When the cars are done with one stage, they
move on to the next. Hence, even though each car still takes the same amount of
time to assemble, the number of cars completed by the assembly line is four times as
many as the sequential case. In a similar way, we decrease the CPI for our processor
by pipelining the execution of the instructions.

In order to explain the changes from the previous design, we start by describing
the five stages of the pipelined processor and what is done in each stage. We also
describe the instructions which are implemented and the register transfers associated
with them. We then turn our attention to a calculation of the resulting performance of
our processor and the impact some of the design decisions have upon the performance

we can achieve. Finally, we turn our attention to the branches that cause problems
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Figure 1: The five stages of the pipelined processor.

in the execution of the pipeline and explain how they are resolved and why we chose

to resolve them with one delay slot.

2 DATAPATH

The five stages in our pipelined processor are the Instruction Fetch (IF), Instruction
Decode (ID), Execution (EX), Memory Access (MEM) and Write Back (WB) stages,
as shown in Figure 1. We latch the information which is passed between the stages to
allow the clock cycle to be short. In the IF stage (Figure 2) we read the instruction at
the address given by the program counter. The Instruction Memory is separated from
the Data Memory allowing us to get the instruction-word while a previous instruction
accesses the Data Memory. The Multiplexor before the program counter (PC) is used
to select the address of the next instruction as either the current address plus four or
the target instruction of a jump or a taken branch.

The ID stage is the most complex in our design as we see in Figure 3. Because we

want to make our processor as fast as possible, we use the extra time available after
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Figure 2: The Instruction Fetch stage.




reading from the register file to resolve the branches and process the forwarding. We
take advantage of the extra time we have after reading the Register File and place
the multiplexors which select the inputs to the arithmetic and logic unit (ALU) in
the ID stage. This choice requires the forwarding unit, which forwards data from the
previous instructions to avoid data hazards, be placed in this stage. Data hazards
occur whenever an instruction uses the output of a previous instruction which has
not yet been written back into the register file. The way we solve this problem is to
forward the data from the latches following the stage where the data word is currently
stored. The forwarding of data words is controlled by the forwarding unit. However,
there are times when the data has not been calculated before it is needed. Thus, we
must stall the pipeline in an interlock state and wait for the data to be calculated.
The interlocks are discussed in more detail when we describe the performance of our
pipeline. Finally the branch detection unit resides here, which compares the two
registers, or the forwarded data, for equality and branches to a new instruction based
upon the result. All of the control signals used by the pipeline are derived from the
instruction-word by the Control Unit in this stage. The sign/zero extension unit
allows for the immediate field to be extended for the ALU. The address of the current
instruction can also be sent though the processor so it can be written into the register
file.

The EX stage, shown in Figure 4, is simpler and faster with the multiplexors and
the Forwarding Unit in the ID stage. The input data to the latch are the ALU inputs
and the control. The outputs to the next stage are the ALU output, the control
signals for the next stages and one of the inputs to handle the case of a memory store
instruction. The ALU computes the result of the operation specified by the control
signals generated by the control unit. We also have one multiplexor on each input in
this stage. These multiplexors allows us to forward the ALU output from the previous
instruction.

The MEM stage is described by Figure 5. In the MEM stage, the ALU output
gives as the data memory address, while the data to be written are passed as a second

32-bit word. In case of a register load instruction, the data read from memory are
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Figure 3: The Instruction Decode stage.
critical path for this stage.

The highlighted part of the diagram is the
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Figure 5: The Memory Access stage.

sent to the next stage to be written into the register file. We also allow the data word
from the ALU output to be forwarded back to the Decode stage or the EX stage.
The final stage is the WB stage (Figure 6), in which we update the register
file. It is the only stage in the pipeline where we write to the register file. We use
the multiplexor to select data written as either the ALU output in case of R-type
instructions or the data read from the memory in case of a register load instruction.
The control signals gives us the register number to write, a write control line to the

register file and the multiplexor control signal.
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3 THE INSTRUCTION SET

Our processor can execute 19 instructions. Before describing their details, we define
some useful fields in the instruction word. The rs, rt and rd fields are the address
of the register given by bits (25 to 21), (20 to 16) and (15 to 11), respectively. The
immediate field is bit 15 to bit 0 of the instruction word. The target field is bits 25
through 0. The description of the register transfers for each instruction can be found

in the Appendix. Here we describe the instructions which have been implemented.

3.1 R-type instructions

The R-type instructions have two input arguments and produce an output which is
a function of the inputs. Our instruction set includes the addition, subtraction, the
logical OR, AND, shift right and shift left and the instruction which sets the output
register to 1 if one of the input arguments is less than the other. These instructions
are named add, sub, or, and, srl, sll and slt respectively.

In order to implement an R-instruction, we fetch it from memory. We then de-
code the instruction and produce the proper control signals. The ALU inputs are in
registers rs and rt, which are read while we produce the ALU control signals. In the
EX stage, we execute the instruction by sending the data to the ALU and selecting
the proper operation using the control signals produced in the previous stage. We
do not have any memory access for these instructions, so we bypass the MEM stage.

Finally, we write the result from the ALU to register rd during the WB stage.

3.2 I-type instructions

The process is the same with the R-type instructions, with the only difference being
one of the inputs to the ALU is the sign-extended or the zero-extended immediate
field. Additionally, we set the destination register address to rt instead of rd. For the
addi, slti instructions we use a sign extension while we zero-extend the immediate
field for the andi and ori instructions. The only instruction which does not have an
R-type equivalent is the lui, load upper immediate. It loads the immediate field into
the upper halfword of register rt.



3.3 Memory Access Instructions

The memory access instructions are the store word, sw, and the load word, 1w, which
write into and read from the memory respectively. After the processor fetches the
instruction, the ID stage sends the rs register contents, the sign-extended immediate
and the contents of register rt to the next stage. At the EX stage, we add the contents
of the rs register and the sign extended immediate to obtain the memory address.
The MEM stage is the most important for this set of instructions. For the load (store)
instruction, we use the address calculated in the previous stage to read (write) data
from (to) the memory. Finally, in the case of a load command, we write the output

of the memory to the register rt in the WB stage.

3.4 Jump Instructions

The set of jump instructions contains types of jumps: unconditional jump to the
instruction at the address given in the target field, j; an unconditional jump to the
instruction at the address contained in the register rs, jr; and a jump and link instruc-
tion which jumps to the target address and stores the address of the next instruction
in register R31, jal. The first two types of jumps only use the first two stages of our
pipeline, since we just need to fetch the instruction and calculate the next address
which is sent to the program counter by the decode stage. For the jal instruction,
we use the Execute stage to calculate the next address and the WB stage to update
register R31.

3.5 Branch Instructions

The two branch instructions, beq and bne, branch to the address specified by the
offset field if the contents of registers rs and rt are equal or not equal respectively.
Again we just need the first two stages of the processor to fetch the instruction,
calculate the branch address and decide if the branch is taken or not. Due to the
pipelining when we decide if a branch or a jump is taken, the next instruction has

already been fetched from memory. This next instruction is the delay slot which may
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Instruction Group | Frequency | Cycles Interlock Delay Slot | Nonpipelined
Contribution | Contribution CPI
ALU Operations 30% 1.0 0.0 0.0 4.0
Immediate ALU 15% 1.0 0.0 0.0 4.0
beq, bne 12% 1.502 0.052 0.45 4.0
j 4% 1.45 0.0 0.45 3.0
jal 2% 1.45 0.0 0.45 3.0
jr 2% 1.502 0.052 0.45 3.0
lui 5% 1.0 0.0 0.0 4.0
lw 20% 1.05 0.05 0.0 5.0
SW 10% 1.0 0.0 0.0 5.0
Total 100% 1.107 4.1

Table 1: The performance measurement for the processor in terms of cycles per

instruction and the contributions from interlocks and delay slots. The values for the

nonpipelined processor are given for comparison and are based on the results of the

previous machine problem.

or may not be filled with a useful instruction.

4 PERFORMANCE ANALYSIS

We can now compare the performance of the pipelined processor and the non-

pipelined processor from the previous machine problem to demonstrate the gains

resulting from pipelining. While exact performance can only be measured by the

time required to execute specific programs, we can approximate the time with the

following equation:

Time = CPI x Clock Period x Number of Instructions,

where the CPI refers to the weighted average number of cycles neccesary for an in-

struction to complete execution. We compute the weighted average by weighting each
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instruction duration by the frequency of that instruction in the program. However
when comparing the processor without a specific program we must make assump-
tions about the frequency of each type of instruction. The frequency assumptions are
shown in Table 1. The number of cycles for each instruction is easily calculated for a
nonpipelined case, because only one instruction is executing at a time. The resulting
CPI for the processor designed in the previous machine problem is shown in Table 1
for comparison.

Next, we need to calculate the CPI for the pipelined case. If the program was
limited to executing ALU operations the number of cycles per instruction would be
one in all cases. However branches, load and stores can cause problems with the
execution of the program. With the choices already made (i.e., five stages in the
pipeline and branch resolution in the second stage with one delay slot), we must take
into account the effects of the delay slot and possible interlocks on a pipeline which
will occur. To account for these complications, we increase the number of cycles
to execute a branch instruction by the average number of delay slots which will go
unfilled. This increase is shown in Table 1 as the Delay Slot contribution. We assume
that 55% of the delay slots can be filled by useful instructions which will not delay
the processor; hence, we only increase the CPI for branches and jumps by 45%.

The last contribution to the CPI is the resulting delay incurred when an inter-
lock occurs. Interlocks occur when the data needed for an instruction before it has
been calculated. This problem in the pipeline will occur when a branch instruction
is dependent upon the previous instruction’s ALU operation. Since the branch in-
struction is at the second stage of the pipeline at the same time that the previous
instruction is at the execution stage, we cannot resolve the branch until the next cycle
when the data can be forwarded back to the ID stage. The interlocks will also be
invoked if the branch or jump register instruction needs the result from a memory
load instruction which is two instructions before the branch. In these cases we stall
the pipeline by rereading the next instruction and not changing the IF/ID latches
which pass the instruction from the IF stage to the ID stage. The other stages will

execute as normal with a useless instruction passed into the next stage. Thus, we
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must stall the pipeline in an interlock state and wait for the data to be calculated.
The contribution from interlocks in Table 1 is due to one instruction having to wait
for the execution of the previous instruction before it can proceed. Fortunately, the
processor doesn’t have to wait very often. We assume that only 5 % of the time do
we have an instruction which is dependent upon the previous instruction and only
one percent of the time is it dependent upon the execution of the instruction before
the previous instruction. These assumptions allow us to calculate the contributions
to the CPI for the interlocks.

For example, as shown in Figure 1, we will have the results of a load word instruc-
tion at the end of stage four. If the next instruction is dependent upon that word
from memory we will incur a one cycle delay. To account for this delay, the CPI of a
load instruction is increased by the frequency of this combination, 5 %. To force cor-
rect execution of these combinations without extra hardware, we require the compiler
to insert an appropriate noop instruction for this case. The other chance for an in-
terlock occurs when an instruction dependent upon the previous instruction requires
evaluation in the second stage, i.e., a branch or a jump. These interlocks, which are
enforced by the hardware itself, cause an increase in the CPI for those instructions
by 5 %. Unfortunately, there is one final case that can occur. If an instruction that
is dependent upon the results of a load occurring two instructions previous requires
evaluation in the second stage, then we will have to stall the pipeline. This last type
of interlock is accounted for by adding a contribution to the CPI of 0.002 cycles. The
additional contribution was calculated by assuming a 1 % probability of an instruc-
tion having a dependent instruction two instructions ahead and a 20 % chance of a
given instruction being a load word.

After having the average number of cycles per instruction, we must examine the
clock period and its effect upon the performance. Ideally, we would have a very short
clock cycle; however, the hardware takes time to evaluate each stage. To choose the
clock period, we look at each stage and evaluate how long each stage will take to
finish executing. We must choose the clock period to be at least the time required

for the slowest stage of the pipeline. This maximum occurs in both stage one (the
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Stage Critical Path Time

Instruction Fetch | Register, Memory 14 ns

Decode Register, Register File,
Multiplexor, Adder, Multiplexor | 14 ns

Execution Register, Multiplexor, ALU 12 ns

Data Memory | Register, Memory 14 ns

Write Back Register, Multiplexor,

Register file 11 ns

Table 2: The critical path delay for each of the processor stages. The critical path
in the decode stage occurs in the case of a branch statement. All other critical paths

are for each type of instruction.

instruction fetch) and stage four (the data memory). The clock period is the sum
of the delay of the register which contains the address for the appropriate memory
and the memory response time. With the requirements given by the hardware for
this processor, we have a 14 ns clock period since the memory requires 12 ns and
the registers require an additional 2 ns. Unfortunately, we cannot reduce this clock
period if we insist upon fetching one instruction every clock cycle. As we can see
in Table 1, we have achieved a performance increase of 3.7 assuming identical clock

cycles for the two processors.

5 OTHER DESIGN ALTERNATIVES

There are other options for the design of the processor. Because the data fetch and
ALU execution stages do not always require the full 14 ns to complete execution, we
can consider combining them into one stage. This combination would allow us to use
the ALU to test the equality for the branch execution. If we were to implement this
change, the interlocks occurring with the branching and jump register instruction

which are currently evaluated in stage two would disappear. The CPI for those
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instructions would then be 1.45 resulting in an average CPI of 1.1. Unfortunately,
while the CPI would decrease, the time required for execution of the combined stage
would increase to at least 16 ns. The time would be the sum of 2 ns for the instruction
register, 4 ns to read the register file, 9 ns for the ALU to obtain a result and an extra
1 ns for a multiplexor which would have to select either the immediate or register
file data to go into the ALU. The additional time would give 17.6 ns per instruction
up from 15.5 ns per instruction. We see why a four-stage design would degrade the
performance of the processor.

We can also consider other alternatives to the dual memory structure. In the
pipelined processor, we separate the instruction and data memories to allow for the
possibility of reading the next instruction and reading or writing to the data memory.
If we were to only use one memory for both data and instructions as we did in the
previous processor, then a read or write to memory would stall the pipeline for one
cycle during the memory access. The cost of the stall in the pipeline would be to
increase the average CPI to 1.4. Because this increase is unacceptably large, we have
chosen to implement the dual memory structure.

After deciding to use a five-stage pipeline for our processor design and before
implementing any part of our design, we had to choose the stage in which the branches
will be resolved and the way we will handle them either using squashing or delay slots.

If we have the branch detection unit at the execution stage, giving two delay slots,
the CPI for a branch will be 2.0 for the squashing case, in which two stall cycles will
occur when the branch is not taken. We assume 50% of the branches are taken.
Similarly if we use two delay slots, where the first is filled 75% of the time and the
second only 20%, the CPI becomes 2.05.

If the branch detection unit is in the decoding stage with only one delay slot, the
CPI for a branch will be 1.55 for the squashing case where there is one bubble 50%
of the time and 5% of the time we have an interlock stall. Finally, for the Delay Slots
design with the branch detection unit in the decoding stage, the CPI for a branch is
1.502 as described above.
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Branch Unit Position | Squashing | Delay Slots

Execution stage 2.0 2.05

Decode stage 1.552 1.502

Table 3: The number of cycles per instruction for branch instructions. The numbers

presented in this table have accounted for interlocks and the control hazards.

We compare these numbers by looking at Table 3. We observe that the design
giving the lowest CPI for a branch instruction is the one-delay-slot design, which we

have chosen. One should also point out that the jump instructions will have a similar

CPL.

6 CONCLUSION

We have presented our design of a five-stages pipelined processor with one delay
slot. The branch detection and the forwarding unit as well as the multiplexors which
control the inputs to the ALU reside in the second stage. This allows us to minimize
the critical path and make our processor as fast as possible, with an expected clock
cycle close to 14 ns. The data hazards are controlled by the forwarding unit and
interlocks which may be inserted. To avoid control hazards we use a single delay slot.
We also outlined all the stages of the pipeline and provided the Register Transfer
Language descriptions of the 19 instructions of our set. We have given a justification
for the design we have chosen and described the factor of 3.7 increase in performance

obtained from a pipelined design.
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7 APPENDIX

For completeness, we present the Register Transfer Language descriptions of the

stages of the pipeline in tabular form. In each of the following tables, the imple-

mented instructions are broken down into the register transfers which will take place

at each stage.

R-type instructions (add, sub, or, and, slt, srl, sll)

Pipeline Stage

RT instructions

Control Signals

IF TR<M(PC) pc.ste
D ROUT1<rs, ROUT2<rt aluin_a_mux=rs,
aluin_b_mux=rt
rd_rt_mux=rd
EX ALUOUT «<ROUT1 (op) ROUT2 ALUop
MEM i ]
WB rd < ALUOUT wh_mux_control=ALUOUT,

rd_rt_mux=rd,

regwrite

Table 1: R-type instructions (add, sub, or, and, slt, srl, sll).
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I-type instructions (addi, ori, andi, slti, lui)
Pipeline Stage RT instructions Control Signals
IF IR<M(PC) pc_src
ID ROUT1<«=rs, aluin_a_mux=rs,
ROUT2<«extended immediate aluin_b_mux=extended
(zero extended for ori,andi) rd_rt_mux=rt
EX ALUOUT «<ROUT1 (op) ROUT2 ALUop
MEM - -
WB rt < ALUOUT wb_mux_control=ALUOUT,
rd_rt_mux=rt,
regwrite

Table 2: I-type instructions (addi, ori, andi, slti, lui).

Iw, sw
Pipeline Stage RT instructions Control Signals
IF IR<M(PC) pc_src
ID ROUT1<«=rs, aluin_a_mux=rs,

ROUT2<«sign extended immediate | aluin_b_mux=sign extended

rd_rt_mux=rt

EX ALUOUT «<ROUT1 + ROUT2 ALUop=+
MEM Memory(ALUOUT)< ALUIN B (sw) MemWrite (sw)
Memory(ALUOUT)=> WB latch (Iw) MemRead (lw)
WB rt < WB latch wb_mux_control=DATA ,

rd_rt_mux=rt,

regwrite (all for 1w)

Table 3: Memory access instructions (lw, sw).
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J

Pipeline Stage

RT instructions

Control Signals

IF IR<M(PC) pc_src
ID PC<«target pc_src=jump
EX - -
MEM - -
WB - -

Table 4: Jump instruction.

Jr

Pipeline Stage

RT instructions

Control Signals

IF IR<M(PC) pc_src
ID ROUTI1 < rs pc_src=jr
PC«<ROUTI1
EX - -
MEM - -
WB - -

Table 5: The jump register instruction.
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jal
Pipeline Stage RT instructions Control Signals
IF IR<M(PC) pc_src
ID PC<«target pc_src=jal
EX ALUOUT « (PC+4)+4 ALUop=+
MEM - -
WB R31 < ALUOUT regwrite, reg=31

Table 6: The jump and link instruction.

beq, bne
Pipeline Stage RT instructions Control Signals
IF IR<M(PC) pc_src
1D PC<«sign_ext<<2+PC+4 | branch_detection=branch _taken(or not)
EX - -
MEM - -
WB -

Table 7: Branch instructions (beq, bne).
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