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1 Outline of Method

We perform an extended, unbinned maximum-likelihood fit to estimate the probabality of
a signal a given dataset, and the location of the signal should it exist. In the fit, we allow
both the peak position and the number of signal events to float. We calculate the P-value for
the null hypothesis by comparing a signal strength parameter to a large sample of generated
datasets without signal events. We use the pyminuit (http://code.google.com/p/pyminuit/)
implimentation of the Minuit (http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/)
minimization package to both minimize the negative log-likelihood and to determine the 68%
CL.

2 Minimization proceedure

We perform an extended, unbinned maximum likelihood fit to each dataset. The likelihood
function, L , is defined as:

L = e−(nsig+nbkg)
N
∏

j=1

[nsigPsig(xj ; E) + nbkgPbkg(xj)] (1)

Were nsig and nbkg are the number of signal and background events, respectively, xj are the
input data, and P represents the probability distribution functions of the background and
signal hypotheses. They are defined as:

Psig(x; E) =
1

σ
√

2π
e

− (x − E)2

2σ2 ; σ = 0.03 (2)

Pbkg(x) =
1

λ
e−λx; λ = 10 (3)
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Likelihood Scan

Figure 1: Likelihood scan of a typical dataset. The color scale represents −lnL . Several
minima are visible.

The parameters left to float are nsig, nbkg, and E. In practice, −ln(L ) often has several local
minima. We choose as the result whichever minima is the least. Figure 1 shows a typical
likelihood scan of the nsig-E parameter space. Such scans are not particularly effective in
finding the correct (deepest) minimum. It is quite common for local minima to be narrow,
but computational concerns require a finite resolution. Instead, we repeat the fit with many
sets initial parameters, and choose the set of parameters with the lowest minimum.

3 Signal and P-value Determination

In order to determine whether to claim a signal, we generate a series of datasets following
the background distribution as deined in the BC2 problem description, and no signal events
(hereafter called the “Null” set). For each dataset within the Null set we follow the mini-
mization proceedure, and find the best fit to the data. We then calculate the value of the
likelihood under the assumption of zero signal events. The difference between the value of
the log likelihood with and without allowing for signal events represents the strength of the
signal. We define a parameter δ as

δ ≡ ln L (min) − ln L (nsig = 0)). (4)

The distribution of δ from the Null set is shown in Figure 2, and the normalized cumulative
distribution, CDF (δ), is shown in Figure 3. The 99th percentile is δ99 = 11.292, which gives
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Figure 2: The δ distribution from fitting 250,000 mock datasets with no signal events.

us the criteria for claiming a signal. We estimate the error on δ99 using a bootstrap technique.
Using a total of 250,000 toy datasets, and 1000 bootstrapped samples, the estimated error
on δ99 is 0.042. We determine the P-value for a given dataset to be

Pi ≡ 1 − CDF (δi), (5)

where δi is the δ measured for a given dataset. In order to determine if δ99 is independent of
peak position, we bin the Null set results into 20 E bins, and calculate the 50th, 75th, 90th,
95th, and 99th percentiles of the δ distributions. The results are in Figure 5. The value of
the 99th percentile is mostly independent of peak position.

4 68% CL determination

Should a dataset pass the δ requiremnent above, we use the best fit values for the peak
position, E, and the number of signal events, nsig as the central values. We use the MINOS
asymetric errors from the Minuit fit package to determine one σ errors. A small multiplica-
tive adjustment is applied to turn it into the 68% CL. Our method produces an estimated
number of signal events, however the problem description defines the signal as D times an
un normalized Gaussian. To turn the number of signal events into D, we simply divide by
the Gaussian integral.
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Figure 3: The normalized cumulative distribution of δ from the mock dataset without signal
events. The curve is 0.99 at δ = 11.292.
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Figure 4: Distribution of δ as a function of the peak position. The structure at a peak value
of 0.9 represents individual events on top of very low expected backgrounds.
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Figure 5: The 50, 75, 90, 95, and 99th percentile δ values, as a function of peak position.
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Figure 6: Distribution of best fit peak values for the no signal datasets.
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D E Rate
1010.0 0.1 0.385
137.0 0.5 0.486
18.0 0.9 0.187

Table 1: Results of the power/sensitivity test.

5 Predicted Results

We have generated a series of mock datasets that are meant to simulate the datasets given
in the problem. For each dataset we blindly apply our proceedure and compare our results
to the known input values. The datasets are generated by randomly generating 1000 ± 100
background events. Half of the datasets get no signal events. For the other half we uniformly
generate a peak position between 0 and 1. The number of signal events is generated from

a Poisson distribution with a mean of Ns = 1000 ∗ r ∗
(

1 +
∫ E+0.03

E−0.03
dx e−10x

)

, where r is

uniformly distributed from 1 to 5.

We report the results below:

Fraction of datasets with no signal and signal claimed 0.0099 (1183/119069)
Fraction of datasets with signal and signal claimed 0.7437 (88594/119126)
datasets with signal and signal claimed:
Fraction of sets where E is within the 68% CL 0.674 (54419/80791)
Fraction of sets where nsig is within the 68% CL 0.686 (55453/80791)

6 Power/Sensitivity

We test the power/sensitivity of this technique by generating 40,000 toy samples for each of
the three cases given, and calculating the fraction of toy sets that we would claim a signal.
The results are in Table 6:

7 Appendix
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Figure 7: Diagnostic plots for the measurement of the peak position. The upper left hand
plot is the peak pull, using the asymetric errors when possible, while the bottom left is the
peak pull distribution plotted against δ. The upper right hand plot is the difference between
the peak position and measured peak position, and the bottom right shows the difference
between the peak position and measured peak position plotted against δ. The large scatter
at low δ in the lower right hand plot is a result of the existence of a signal, but a larger
background fluctuation, and thus the peak is poorly estimated.
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Figure 8: The upper left hand plot is the signal events pull, using the asymetric errors when
possible, while the bottom left is the signal events pull distribution plotted against δ. The
upper right hand plot is the difference between the signal events and measured signal events,
and the bottom right shows the difference between the peak position and measured signal
events plotted against δ. The bias in the signal events pull distribution represents dendency
to pick out as the appropriate minimum an upward fluctuation in the number of events. In
other words, for a given trial, should the number of signal events fluctuate down, we don’t
see the signal, and that trial doesn’t enter the plot, while an upward fluctuation is much
more likely to be identified and so we get a bias.
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