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Lecture 1:

Lecture 2:

Lecture 3:

Lecture 4:

Lecture Series Qutline

Introduction. Gaussian Approximations
Data Analysis and Systematic Uncertainties
Hypothesis Testing, Confidence Intervals

Bayesian Inference, Miscellaneous Topics:
Binning, Smoothing, Unfolding



Lecture 1:

* Introduction

* Probability and Statistics
* Collider Experiments

* Common Conventions

* Likelihood Fits
 Goodness of Fit Tests



Useful Reading Material

Particle Data Group reviews on Probability and Statistics. http://pdg.lbl.gov

Frederick James, “Statistical Methods in Experimental
Physics”, 29 edition, World Scientific, 2006

Louis Lyons, “Statistics for Nuclear and Particle Physicists”
Cambridge U. Press, 1989

Glen Cowan, “Statistical Data Analysis” Oxford Science Publishing, 1998

Roger Barlow, “Statistics, A guide to the Use of Statistical
Methods in the Physical Sciences”, (Manchester Physics Series) 2008.

Bob Cousins, “Why Isn’t Every Physicist a Bayesian”
Am. J. Phys 63, 398 (1995).

http://indico.cern.ch/conferenceDisplay.py?confld=107747
http://www.physics.ox.ac.uk/phystat05/
http://www-conf.slac.stanford.edu/phystat2003/
http://conferences.fnal.gov/cl2k/

| am also very impressed with the quality and thoroughness of Wikipedia articles

on general statistical matters. o
T. Junk, Statistics, HCPSS 2012
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Figures of Merit

Our jobs as scientists are to

e Measure quantities as precisely as we can
Figure of merit: the uncertainty on the
measurement

e Discover new particles and phenomena
Figure of merit: the significance of evidence
or observation -- try to be first!
Related: the limit on a new process

To be counterbalanced by:
e Integrity: All sources of systematic uncertainty must be
included in the interpretation.
e Large collaborations and peer review help to identify
and assess systematic uncertainty

T. Junk, Statistics, HCPSS 2012



Figures of Merit

Our jobs as scientists are to

e Measure quantities as precisely as we can
Figure of merit: the expected uncertainty on the
measurement

e Discover new particles and phenomena
Figure of merit: the expected significance of evidence
or observation -- try to be first!
Related: the expected limit on a new process

To be counterbalanced by:
e Integrity: All sources of systematic uncertainty must be
included in the interpretation.
e Large collaborations and peer review help to identify
and assess systematic uncertainty

Expected Sensitivity is used in Experiment and Analysis Design

T. Junk, Statistics, HCPSS 2012



Probability and Statistics

Statistics is largely the inverse problem of Probability

Probability: Know parameters of the theory — Predict
distributions of possible experiment outcomes

Statistics: Know the outcome of an experiment — Extract
information about the parameters and/or the theory

Probability is the easier of the two -- solid mathematical arguments
can be made.

Statistics is what we need as scientists. Much work done in
the 20" century by statisticians.

Experimental particle physicists rediscovered much of that work
in the last two decades.

In HEP we often have complex issues because we know so much about
our data and need to incorporate all of what we know



Tevatron
ring radius=1 km

Protons on
antiprotons
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The Large Hadron Collider

R e e
m e e s

Circumference:

[ MUONCHAVBERS | | WNER TRAGKER
7 / [

= - - >~

Absorber

Dipole Magnet
~ S -~ = -
y A . Magnet

& o /‘ ' 7 . - - '
Ve T SEmeamny = = -~ . B
g e u..‘ e 3 3 X
= —— : ~ S .
: > s ' ~ - A High Momentum
: ! s et - Bt
i st
- = -t < F i - - o )

Tom Weight .

Overall diameter -y
n

oo : T N Muon Chambers ﬂ

P B ( ;C €

Track
Syste




A Typical Collider Experimental Setup

End-Plug Electromagnetic Central Muon Central Muon Upgrade (CMP)
Calorimeter (PEM) Chambers (CMU)

End-Wall Hadronic
Calorimeter (WHA)

Central Muon Extension (CMX)

End-Plug Hadronic
Calorimeter (PHA)

bY
\
-

,/\\\

/A\/ﬁ/ Protons
,/// \\

i

.
—

Cherenkov Luminosity
Counters (CLC)

\

—

Tevatron
Beampipe

Barrel Muon
Chambers (BMU)

Central Outer Tracker (COT)

Solenoid

Central Electromagnetic Interaction Region

Calorimeter (CEM) Layer 00
Central Hadronic Silicon Vertex Detector (SVX Il)
Calorimeter (CHA) Intermediate Silicon Layers (ISL)

Counter-rotating beams of particles (protons and antiprotons at the Tevatron)
Bunches cross every 396 ns.

Detector consists of tracking, calorimetry, and muon-detection systems.

An online trigger selects a small fraction of the beam crossings for further storage.

Analysis cuts select a subset of triggered collisions.

T. Junk, Statistics, HCPSS 2012
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Run: 211883 Eyent: 1911511 Et = 101.13 GeV
CEM Chargeta=-0.72 - I,

MET=41.85, MétPhi=-0.83

Jet1: Et=46.7 Etas-0784, Tag=1 u
Jet2: Et=16.6 Eta Tag=0
QxEta = 2.91 | \

Track Pt>1 GeV
Tower Et > 3 GeV

T. Junk, Statistics, HCPSS 2012
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Some Probability Distributions useful in HEP

Binomial:
Given a repeated set of N trials, each of which has
probability p of “success” and 1 - p of “failure”, what is
the distribution of the number of successes if the N trials
are repeated over and over?

Binom(k | N, p) = (%)pk (1 — p)N_k , o(k)=+/Var(k) = \/Np(l - D)

k is the number of “success” trials

Example: events passing a selection cut, with a fixed total N

The Gaussian approximate formula | remember:
Measuring p with observe k out of N (e.g. acceptance measurements)

=k/N _ |pd-p)
p=k/N o,-= N



Binomial Distributions in HEP

Formally, all distributions of event counts are really binomial distributions

- The number of protons in a bunch (and antiprotons) is finite
- The beam crossing count is finite

So whether an event is triggered and selected is a success or fail decision.

But — there are ~5x10*3 bunch crossings if we run all year, and each bunch crossing
has ~ 101° protons that can collide. We trigger only 200 events/second, and usually

select a tiny fraction of those events.

The limiting case of a binomial distribution with a small acceptance probability
is Poisson.

Useful for radioactive decay (large sample of atoms which can decay, small decay rate).

A case in which Poisson is not a good estimate for the underlying distribution of event

counts: A saturated trigger (trigger on each beam crossing for example). — DAQ runs
at its rate limit, producing a fixed number of events/second (if there is no beam).

To discuss later if we have time: “The Stopping Problem”



The Poisson Distribution

Limit of Binomial when N — o and p — 0 with Np = u finite
—u .k

u o
ok)=+u i

€

Poiss(k | u) = y

Normalized to L
Y Poiss(k lw) =1, Yu
k=0

unit area in
two different senses

[ :Poiss(k lwdu=1 Yk

The Poisson distribution is assumed for all event counting
results in HEP.
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Composition of Poisson and Binomial Distributions

Example: Efficiency of a cut, say lepton p; in leptonic
W decay events at the Tevatron

Total number of W bosons: N -- Poisson distributed with
mean u

The number passing the lepton p; cut: k
Repeat the experiment many times. Condition on N
(that is, insist N is the same and discard all other trials

with different N. Or just stop taking data).

p(k) = Binom(k|N,e) where ¢ is the efficiency of the cut



Composition of Poisson and Binomial Distributions
If we no longer conditionon N (u = ol):

The number of W events passing the cut is just another
counting experiment -- it must be Poisson distributed.

Poiss(k leol) = EBinom(k | N,e)Poiss(N |ol)
N=0
A more general rule: The law of conditional probability
P(A and B) = P(A|B)P(B) = P(B|A)P(A) more on this one later

And in general, TA)= ;P(A |B)P(B)



Joint Probability of Two Poisson Distributed Numbers

Example -- two bins of a histogram
Or -- Monday’s data and Tuesday’s data

Poiss(x | u) x Poiss(y |v) =Poiss(x + y lu+ v) x Binom(x lx+y, H )
u+v

The sum of two Poisson-distributed numbers is Poisson-
distributed with the sum of the means

EPoiss(k | w)Poiss(n — k lv)=Poiss(n |l u+v)
k=0

Application: You can rebin a histogram and the contents of each
bin will still be Poisson distributed (just with different means)

Question: How about the difference of Poisson-
distributed variables?



Application to a test of Poisson Ratios

Our composition formula from the previous page:

Poiss(x | i) x Poiss(y [v) =Poiss(x + y | u+ v) x Binom(x lx+y, 1 )
u+v

Say you have n_ in the “signal” region of a search, and
n.in a “control” region -- example: peak and sidebands

n, is distributed as Poiss(s+b)
n. is distributed as Poiss(tb)

Suppose we want to test Hy: s=0. Then n/(n+n )
is a variable that measures 1/(1+t)

The control region could be the weak link in the interpretation!



Another Probability Distribution useful in HEP

0.4 i
. 0.3 F
Gaussian: 03
0.25 E
0.2 ;
0.15 E
1 C(mw)? o -
2 005 F
Gauss(x,u,0) = =¢ 207 0
2mO

(1/SQRT(2%3.1415))xEXP(—~X*%2/2)

It’s a parabola on a log scale.

Sum of Two Independent Gaussian Distributed
Numbers is Gaussian with the sum of the means
and the sum in quadrature of the widths

Gauss(z,u + v,\/ai + O'yz) = f Gauss(x,u,0,)Gauss(z - x,v,0, )dx

A difference of independent Gaussian-distributed numbers is also
Gaussian distributed (widths still add in quadrature)

T. Junk, Statistics, HCPSS 2012 20



The Central Limit Theorem

The sum of many small, uncorrelated random numbers

is asymptotically Gaussian distributed -- and gets more so

as you add more random numbers in. Independent of

the distributions of the random numbers (as long as they stay
small).

8000—_lll|lllllll|lllllll__ 15000_Illl[llll]llllnlzllll_
6000 | : |
- ] 10000 — ]

4000 B .
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o T ! | oLy | \
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0 1 2 3 0 1 2 3 4 3
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i\l iu

Poisson for large u is Approximately Gaussian of width

o =\

If, in an experiment
all we have is a
measurement n, we

o1 often use that to
' ] estimate u.
2 . 10
A=0.5 /. =4.0

We then draw
error bars on the data.

This is just a convent'ion,'\/ n
and can be misleading.

o4

0.1
| ] (We still recommend you
0 2 4 0 2 4 € & 10 12 14 16 do it, however)
A-10 A-8.0
0.1-|
0 2 46 0 2 4 €6 & 101214 16 18 20 22 24 26 28

s =20 A=16.0
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Why Put Error Bars on the Data?

“Il n'est pas certain que

 To identify the data to people who tout soit incertain.
are used to seeing it this way (Translation: It is not certain
that everything is uncertain.)”
» To give people an idea of how many — Blaise Pascal, Pascal's Pensees
data counts are in a bin ‘ B .
when they are scaled (esp. on a Z ;CIM P Z‘OIII"'L':%')& ] \{ETZTf\é
logarithmic plot). é’ 0s L (& 350 Gevie:
- L [ Ztjets ]
* So you don’t have to explain el o [ et _
yourself when you do something [ Jpibosons -
different (better) ol BE )
i
But: \/; # \/ﬁ 43 E
L1 [T TR PRI I ]

| L I
2 4 6 8 10

) 0
The true value of uis No. of all jets
usually unknown https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEX011066
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Aside: Errors on the Data? (answer: no)

Standard to make MC histograms with no errors: Data points
with error bars: L
Nobs - v Tobs

But we are not uncertain of n ;! We are only uncertain

about how to interpret our observations; we know how to count.

Table 3: The numbers of expected signal (myg = 125 GeV) and back-
ground events, together with the numbers of observed events in the

Correct . data, in a window of size +5 GeV around 125 GeV, for the combined
presentation
of data and vs =7 TeV and /s = 8 TeV data.
predictions
Signal ZZ®) Z +jets, tf Observed
4u 2.09+0.30 1.12+0.05 0.13+0.04 6
2e2u2u2e 2.29+ 033 0.80+0.05 1.27+0.19 5
4e 0.90+0.14 044+0.04 1.09+0.20 2

ATLAS Collab., arXiv:1207.7214
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Sometimes another convention is adopted for showing error bars on the data

Events/5 GeV

g e Data ) _
B Background 72" ATLAS Prellr*nlnary
8- MM Bacground Zujets  HoZZ 4y
B -1
7 Signal (m:=150 GeV) ILdt =581b But there a.re
I Signal (m =190 GeV)  \s =8 TeV several options.
6 %% Syst.Unc.
7 Need to explain
5 which one is
chosen
4
3
2

100 150 200 250
m,, [GeV]
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Not all Distributions are Gaussian

Track impact
parameter
distribution
for example

Multiple
scattering --

core: Gaussian;
rare large scatters;
heavy flavor,

nuclear interactions,

decays (taus 1n
this example)

| do from light quark jets (other taus in evts with taus matching MC) I jet do
Entries 11988
lllll L L L L LR NLELEL NN RLALELELE LA Mean 0.006378
3 RMS 0.01347
10 B Underflow 0
= Overflow 558
- Integral 1.143e+04

Core is approximately

2 Gaussian
10

10

L] lllllll
——

-
|

0 0.01 0.02 0.03 0.04 0.05 0.06 007 0.08 0.09 0.1

“All models are false. Some
models are useful.”
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Different Meanings of the Idea “Statistical Uncertainty”

e Repeating the experiment, how much would we expect the
answer to fluctuate?

-- approximate, Gaussian

e What interval contains 68% of our belief in the parameter(s)?
Bayesian credibility intervals

e What construction method yields intervals containing
the true value 68% of the time?
Frequentist confidence intervals

In the limit that all distributions are symmetric Gaussians,
these look like each other. We will be more precise later.

T. Junk, Statistics, HCPSS 2012 27



Why Uncertainties Add in Quadrature

Common situation -- a prediction 1s a sum of

uncertain components, or a measured parameter 1s a sum

of data with a random error, and an uncertain prediction
“statistical”  _—" ¥~ “systematic”
e.g., Cross-Section = (Data-Background)/(A*e*Luminosity)
where Background, Acceptance and Luminosity are
obtained somehow from other measurements and models.

Probability distribution of a sum of Gaussian distributed
random numbers 1s Gaussian with a sum of means and
a sum of variances.
O
2 2
/ g(CU, M1, O']_)g(CUI—CU, M2, 0-2>dx — g(xla :LL1+/*L27 \/01 + 0-2)

— O

Convolution assumes variables are independent.

T. Junk, Statistics, HCPSS 2012 28



Statistical Uncertainty on an Average of Independent
Random Numbers Drawn from the Same Gaussian Distribution

Useful buzzword: “l1ID” = “Independent, identically distributed

N measurements, x; = O are to be averaged
1 N
x — E X. is an unbiased estimator
l of the mean u
N <
The square root of the variance of the sumis |/ a7 2

so the standard deviation of the distribution of
averages 1S

Worth

G)f = Remembering
N this formula!



Estimating the Width of a Distribution

It’s the square Root of the Mean Square (RIMS) deviation from the true mean

2= )’
| N

Gest (Autrue known) =

BUT: The true mean is usually not known, and we use the same data to estimate
the mean as to estimate the width. One degree of freedom is used up by the
extraction of the mean.

This narrows the distribution of deviations from the average, as the average is
closer to the data events than the true mean may be. An unbiased estimator

of the width is:
¥ (x, - %)’

N -1

Gest (Mtrue unknOWn) =
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The Variation of the Width Estimate

| once had to use this formula for

For Gaussian distributed numbers, the variance of o2

The standard deviation of o, is therefore

est

o /+/2(N - 1)

1400 —

Tagged Events

| got this formula from the Particle Data Group’s Statistics Review
-- G. Cowan made the most recent revision

is 20%/(N-1).

my thesis. Momentum-weighted charge A :gdiffll
determination of Z decay to bbbar in e*e” collisions oo |- T 49, sum
800 } ::)é
Qaissl = 1Q| = 1| D alp: - t]"sgn(p; - 1) K
b tracks 600 9(;)
Z S Pk w0
b OZ - q‘l'p’l,.t‘ | 200 - * o
/ tracks °'f<.>oo
0 I AU IR
0 2 4 6 8 10 12 14

QI (GeVic)'?
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Uncertainties That Don’t Add in Quadrature

Some may be correlated! (or partially correlated). Doubling
a random variable with a Gaussian distribution doubles its

width instead of multiplying by+/2

Example: The same luminosity uncertainty affects
background prediction for many different
background sources in a sum. The luminosity
uncertainties all add linearly. Other uncertainties
(like MC statistics) may add in quadrature or linearly.

Strategy: Make a list of independent sources of uncertainty -- these
cach may enter your analysis more than once. Treat
each error source as independent, not each way they
enter the analysis. Parameters describing the sources
of uncertainty are called nuisance parameters
(distinguish from parameter of interest)
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Propagation of Uncertainties

Covariance: 0‘221,@ p— <(’U/ — '1_1/) (U T ?7)> v

If

r — au

then

a:% — a205 —+ bza,g —+ 2ab05v

In general, if r = f(u, U)

ol

bu

This can even
vanish!
(anticorrelation)

) (5:) 7



Relative and Absolute Uncertainties

If X — auv
then ag = a2v205 + a2u205 + 2a%uvo?

uv
2 2 2
or, more easily, @ — Oy | To LD Ouv
XL u2 (v 2 uv

“relative uncertainties add in quadrature” for
multiplicative uncertainties (but watch out for correlations!)

The same formula holds for division (!) but with a minus sign in
the correlation term.

Tip: I can never remember the correlation terms here! I always

seek an uncorrelated basis to represent uncertainties, and derive
what I have to.

T. Junk, Statistics, HCPSS 2012
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How Uncertainties get Used

Measurements are inputs to other measurements -- to compute
uncertainty on final answer need to know uncertainty on parts.

Measurements are averaged or otherwise combined -- weights
are given by uncertainties

Analyses need to be optimized -- shoot for the lowest uncertainty

Collaboration picks to publish one of several competing analyses
-- decide based on sensitivity

Laboratories/Funding agencies need to know how long to run
an experiment or even whether to run.

Statistical uncertainty: scales with data (1/sqrt(L). Systematic uncertanty
often does too, but many components stay constant -- limits to
sensitivity.

T. Junk, Statistics, HCPSS 2012
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Examples from the
front of the PDG

T. Junk, StaBSRdSATEP3% 3512
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v? Fitting and Goodness of Fit

For n independent Gaussian-distributed random numbers, the
probability of an outcome (for known o; and u, ) 1s given by

n
p(QZ‘]_,... 73771) — H g(xiaﬂiaai)
1=1

n 1 N2 2
p(wl,,ivn) — H e (xz :LLZ) /20'Z

i—=1 \/27‘('0'7;2

If we are interested in fitting a distribution (we have a model
for the w. in each bin with some fit parameters) we can maximize
p or equivalently minimize

o; includes

n Ti — 2 stat. and syst.
X2 — Z ( (4 QILL’L) — _2|np_|_c CITOLS

i=1 9
For fixed u; this %? has n degrees of freedom (DOF)




Counting Degrees of Freedom

Z MZ) has n DOF for fixed u. and o,

’L

If the w, are predicted by a model with free parameters
(e.g. a straight line), and > is minimized over all values

of the free parameters, then Approximate! Not always!

e (*cough*)

DOF = n - #free parameters 1n fit. e S
) ;B,(dcg versus £ xrenSion -—H—j?" ; g
/b‘r Serin ¢ a //
Example: Straight-line least-squares fit: K
. . £ ol /X i
DOF = npoints - 2 (slope and intercept float) i, ‘o /{4&3
Sho T
X \ //l/
With one constraint: intercept =0, ‘| [ [/
6 data points, DOF = ? ‘A
ol A
e o el e s e
o/
0.0 7 7 36 Lo %
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MC Statistics and “Broken” Bins

>
8 _o_Data [Ldt=201b"
0 10?2 e [JFakey, Real+fake b
N Bl Real y, Fake b
o Cve
Q EEE b
..g 10 Backg round Uncertainty
o
= NDOF=?
L
-1
10™

T 50 100 150 200 250 350 400
E.(y) [GeV]
e Limit calculators cannot tell if the background expectation
is really zero or just a downward MC fluctuation.
e Real background estimations are sums of predictions with
very different weights in each MC event (or data event)
e Rebinning or just collecting the last few bins together often helps.

e Advice: Make your own visible underflow and overflow bins

(do not rely on ROOT’s underflow/overflow bins -- they are usually
not plotted. Limit calculators should ignore ROOT’s u/o bins).

T. Junk, Statistics, HCPSS 2012
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The x? Distribution

Plot from Wikipedia:
“k” = number of degrees of Freedom

(.3
0.21

0.1 Cumuliative 1 (;" 11-')

Distribution T (%) "

().0
()

Mean: k
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v and Goodness of Fit

* Gaussian-distributed random numbers cluster around u,
~68% within 10. 95% within 20. Very few
outside 3 sigma.

TMath::Prob(Double_t Chisquare,Int_t NDOF)

Gives the chance of seeing the value of
Chisquared or bigger given NDOF. 1.000

0.500

0.200
0.100
0.050

This is a p-value (more on these later

10 \ 20\30 \ 50

LI IIITI
1 l.lll.ll

CERNLIB routine: PROB.

0.020

p-value for test
o for confidence intervals

0.010
0.005

T ITIII

0.002
0.001
1

2 345 7 10 20 304050 70 100

x2
Figure 33.1: One minus the x? cumulative distribution, 1 — F(x?;n), for n degrees
of freedom. This gives the p-value for the x? goodness-of-fit test as well as one
minus the coverage probability for confidence regions (see Sec. 33.3.2.4).
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A Rule of Thumb Concerning x?

Average contribution to %> per DOF is 1. %?/DOF
converges to 1 for large n

2.5
2.0
1.5
x%/n
1.0

0.5

0.0

L UL

|II | IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

H‘*‘_

N

S

IllI|llII|IllI|Illl|Illl|llll|llll|llll|llll

)

10 20 30 40 50
Degrees of freedom n
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Chisquared Tests for Large Data Samples

CDF Run Il Preliminary, L=3.2 fb™

2 « Data W wbb W+LF
Nasoo | M s-channel M ttbar NonW |
@ [ t-channel Wc+Wee M Z+jets,Diboson
P ]
whed
$3000 - .
> .
] L
2500 - Mg
2000 |- o
- ™~ .
1500 - .
-
- - —‘7 | ]
1000 - — o
500 |- . i
e S - w
0 05 1 15 2 25 3 35 4 45 5
AI’ji
PHX CDF Run Il Preliminary, L=3.2 fb™
"-g 500 [ - Data B wWbb W+LF -
N - W s-channel [ ttbar NonW =
% [ M t-channel Wc+Wcc [ Z+jets,Diboson g
€ i 1
w g =
® &
300 8
n 2
. o o
200 +.‘_ . g
T -
100 - * 1
Lol ] ! . : ] Lo | S
0 05 1 15 2 25 3 35 4 45 5

AI’ji

eje( o} pajess ojie ajuop

A large value of ¥*/DOF -- p-value is
microscopic. We are very very sure
that our model 1s slightly wrong.

With a smaller data sample, this model
would look fine (even though it is

still wrong.

v? depends on choice

of binning,.

Smaller

data samples:
harder to
discern
mismodeling.

T. Junk, Statistics, HCPSS 20:

Events/0.5
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PHX CDF Run Il Preliminary, L=3.2 fb™

® Data B Wbb W+LF
. M s-channel M ttbar NonW
- [ t-channel Wc+Wce [ Z+jets,Diboson

el —————— . T 0 ]
0 05 1 15 2 25 3 35 4 45 5
%*/DOF=9.39362/10

KS test: 0.711 Ar.
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v?> Can Sometimes be so Good as to be Suspicious

+ - +yx7-
clee >W'W)
20_""""""I""""I""""I""""I""
18 FOPAL preliminary §
16:— + ' T
14 .
o212 + B
=% C
B0 F :
© 8L _
6 .
4 - ]
C + ¢ Data ]
2 F GENTLE prediction
i No ZWW Vertex
0 I I I IIIIIIlIIIIIIIIIIIl I

\s / GeV

no free parameters in model

(happy ending: further data points increased %? )
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It should happen
sometimes! But it
1s a red flag to go
searching for
correlated

or overestimated
uncertainties



Or Really Suspicious

EMmres T
I Mean 04518
- AMS  0.2208
.
.
08
.
n
o.s =
L
s
04 1 f~=1
+4 T+t T
I T .- .
i -
0-2 -8 4»_""
s .
o -
s
s
42~:‘1J ' b l A . ' ' l ' e A ' l ' A A A 1 llllllll
0 0102 03 04 05 06 07 08 09 1
Dimetrodon {ncisivus, mounted skeletan, No. 4636 A. M. N. H. Mouated by A. Hermann. Greatly reduced.

Seale in feet and decimetres

Cause of the problem: Not calling TH1::Sumw?2()
Uncertainties are overestimated in this case.
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It can go the other way — Is this an estimate of a smooth function?

0.14:

0.12;
ls
0.1:'

0.08:

006

0 01 02 03 04 05 06 07 08

T. Junk, Statistics, HCPSS 2012

Mean
RMS

0.4987
0 3342

0.9

x? is really bad
for any smooth
function

Uncertainties

probably
underestimated.
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Including Correlated Uncertainties in y?

Example with

* Two measurements a,* u,* ¢, and a, * u, * ¢, of one parameter x
* Uncorrelated errors u, and u,

 Correlated errors ¢, and ¢, (same source)

C@) = Y (¢—a)C;i@—aj)

i j=1,2

C— <u%—|—c% Cc1Co ) _ ( 0% p0102>

Cc1Co u% —+ c% pPO109 a%

If there are several sources of correlated error ¢/ then the
off-diagonal terms become ) " cfch
p



Combining Precision Measurements with BLUE
2 _ et |
@)= Y (¢ —a)Cit(a - a))

1,7=1,2
Procedure: Find the value of x which minimizes 2

This is a maximum likelihood fit with symmetric, Gaussian
uncertainties.

Equivalent to a weighted average:

xbest = Ewiai with Ewi =1
; l

1 standard-deviation error from 2(x, . £0,)-%>(x,,,,)=1

Can be extended to many measurements of the same parameter x.

T. Junk, Statistics, HCPSS 2012
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More General Likelihood Fits

L = P(data IV,@)

o
v: “Parameters of Interest” mass, cross-section, b.r.
0: “Nuisance Parameters” Luminosity, acceptance,

detector resolution.

Strategy -- find the values of 6 and v which maximize L

Uncertainty on parameters: Find the contours in v such
that

In(L) =In(L,.,) - s°/2, to quote s-standard-deviantion
intervals. Maximize L over 6 separately for each value of
v. Buzzword: “Profiling”



More General Likelihood Fits
Advantages:

» “Approximately unbiased”

 Usually close to optimal

 Invariant under transformation of parameters. Fit for a mass
or mass? doesn’t matter.

Unbinned likelihood fits are quite popular. Justneed L = P (data | 6,\7 )

Warnings:

* Need to estimate what the bias is, if any.

* Monte Carlo Pseudoexperiment approach: generate lots of random

fake data samples with known true values of the parameters sought,

fit them, and see if the averages differ from the inputs.

* More subtle -- the uncertainties could be biased.
-- run pseudoexperiments and histogram the “pulls” (fit-input)/error -- should

get a Gaussian centered on zero with unit width, or there’s bias.

* Handling of systematic uncertainties on nuisance parameters by maximization
can give misleadingly small uncertainties -- need to study L for other values
than just the maximum (L can be bimodal)
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Example of a problem:

Using Observed Uncertainties in Combinations Instead
of Expected Uncertainties

Simple case: 100% efficiency. Count events in several

subsets of the data. Measure K times each with
: . n.xAln.
the same integrated luminosity. l l
. hted
_ Weighted average:
Total: Nip = E 1 (from BLUE)
i=1
K K
2
Best average: n,, .= N,,/K E n./lo; E n/n,
. . K
nmg

=% =% T K
Ylo;  Yin,  Ylin
i=1 i=1 i=1

crazy behavior (especially
if one of the n.=0)



What Went Wrong?

-- low measurements have smaller
uncertainties than larger measurements.

True uncertainty 1s the scatter in the
measurements for a fixed set of true
parameters

Solution: Use the expected error \/ﬁ
for the true value of the parameter after
averaging -- need to iterate!

But: Sometimes the “observed” uncertainty carries some real
information! Statisticians prefer reporting “observed”

400

350

300

250

200

150

100

uncertainties as lucky data can be more informative than

unlucky data.

] ttbar xsec pull combined |

sigmaPullComb

Entries
Mean
RMS
Underflow
Overflow
Integral

10000
-0.2967
1.084
"
0
9989
542.3/76
0
387.4 +4.976
-0.2537 = 0.01174
0.9734+0.00752

5 4

-3 -2 1

“pull” =

Example: Measuring M, from one event -- leptonic decay is better than

hadronic decay.

(x

w)o




A Prominent Example of Pulls -- Global Electroweak Fit

2/DOF = 18.5/13

probability = 13.8%

Didn’t expect a 30

result in 18 measurements,
but then again, the total

¥? is okay

Measurement Fit |Q™eas_Qft|/gmeas

0

]

2

3

0,b
A]E)b

,C
At
Ay
A

C

A(SLD)

91.1875 + 0.0021 91.1874
2.4952 + 0.0023  2.4959
41.540 = 0.037 41.478
20.767 = 0.025 20.742

0.01714 + 0.00095 0.01645
0.1465 = 0.0032  0.1481

0.21629 + 0.00066 0.21579
0.1721 + 0.0030 0.1723
0.0992 + 0.0016  0.1038
0.0707 £ 0.0035  0.0742

0.923 = 0.020 0.935
0.670 = 0.027 0.668
0.1513 = 0.0021 0.1481

sin“07(Q,) 0.2324 =0.0012  0.2314

eff

m,, [GeV]

Iy [GeV]
m, [GeV]

March 2012

80.385 = 0.015 80.377
2.085 + 0.042 2.092
173.20 = 0.90 173.26

T. Junk, Statistics, HCPSS 2012
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Bounded Physical Region

What happens if you get a best-fit value you know can’t possibly be the true?
Examples:

Cross Section for a signal <0
m?(new particle) <0
sin@<-1or>+1

These measurements are important! You should report them without adjustment.
(but also some other things too)

An average of many measurements without these would be biased.
Example: Suppose the true cross section for a new process is zero.
Averaging in only positive or zero measurements will give a positive answer.

Later discussion: confidence intervals and limits -- take bounded physical
regions into account. But they aren’t good for averages, or any other
kinds of combinations.



Odd Situation: BLUE Average of Two Measurements not Between
the Measured Values

e.g., Jet Energy Scale

“Nuisance” Parameter

) o

29
Parameter of “Interest e.8., Mop rec

>



An Exercise: What is the Expected Difference in a Measured
Value when a Cut is Tightened or Loosened?

Assume no systematic modeling problems with the variable that is being cut on.

Usually this is what we’d like to test. The result of a measurement will depend on the
event selection, but it will have statistical and systematic components.

Let’s estimate the statistical component.

Total measurement: x, * 0,. (stat uncertainty only)

Tighten cuts: get: x, + 0,.

Make a measurement in the exclusive sample (what was cut out): x;*os,.
Weighted averages: x, and x; are independent.

X X
X, = 2 3 ] 1
1 1 2 t 2
) + > ()'2 ()'3

02 03

T. Junk, Statistics, HCPSS 2012
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An Exercise: What is the Expected Difference in a Measured
Value when a Cut is Tightened or Loosened?

Would like to know what the width is of the distribution x;-x, (total minus
the new version with the tighter cut).

Strategy: Solve for x;-x, in terms of x, and x;, which are the independent
variables, with independent uncertainties. Propagate the uncertainties

in x, and x5 to x;-x,.
o o
O12 O’3

And after a small amount of work, & = o'g -0,

X1 =X2

check: If the new cut is the same as the old cut, no difference in measurements!
Assumes: Gaussian, uncorrelated measurement pieces.
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The Kolmogorov-Smirnov Test

X2 Doesn’t tell you everything you may want to know about distributions that
have modeling problems.

Ideally, it is a test of two unbinned distributions to see if they come from the same

parent distribution. KS—Test Comparison Cumulative Fraction Plot
| J | J | J [ J | J
Procedure: Lo i
* Compute normalized, i ]
cumulative distributions 8 -
of the two l i
unbinned sets of events. 6 L |
Cumulative distributions '
are “stairstep” functions i i
* Find the maximum 4 .
distance D between the - -
two cumulative distributions 9 L _
called the “KS Distance”
0 . 1 . 1 . 1 . l L
0 10 20 30 40
X

http://www.physics.csbsju.edu/stats/KS-test.html
T. Junk, Statistics, HCPSS 2012 58



The Kolmogorov-Smirnov Test

KS—Test Comparison Cumulative Fraction Plot
* p-value is given by this pair of equations b - T T T T

oD |

p@) =2 (=) o
j=1

You can also compute the p-value by running
pseudoexperiments and finding the e
distribution of the KS distance. X
Distributions are usually binned

though — analytic formula no longer applies.

Run pseudoexperiments instead. See also F. James,
Statistical Methods in
See ROOT’s Elementary Particle Physics, 2" Ed.

TH1::KolmogorovTest()
which computes both D and p.
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Cautions with the Binned Kolmogorov-Smirnov Test

// Statistical test of compatibility in shape between
// THIS histogram and h2, using Kolmogorov test. /

Double t TH1::KolmogorovTest(const TH1 *h2, Option t *option)

The pseudoexperiment option “X” only varies the the “this” histogram (h1)
and not h2 but it draws pseudoevents with the histogram normalization of h2.

This procedure makes sense if the “this” histogram is a smooth model, and h2
has statistically limited data in it. Exchanging h1l and h2 gives you different KS

p_values (although the same Dl) CDF Run Il Preliminary [L=82n"
= ZH w/ 1 Jet Signal Region (Z-Peak) Wz
= m,=165 GeV/c’ 2y
Putting in the histograms in reverse order can 35F Zodets
- Y74
make for some very large KS p-values — . 3F W
’'ve seen talks in which all the KS S 2sf o
. ‘aé,' -
p-values are 0.99 or higher. 2 2 —
5 -
1.5
1;— S
0.5F
SN T T N N I B B
0 50 100 150 200 250 300 350 400

T. Junk, Statistics, HCPSS 2012
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The Run Test

Count the maximum number of neighboring positive deviations from
the data and the prediction, and also negative deviations. If there are many deviations
of the same sign in a row, even if the X% looks okay, it is a sign of mismodeling.

Typically we don’t go to the trouble of computing p-values for the run test. But

it’s a handy thing to remember when reviewing the modeling of distributions in the
process of approving analyses. What’s the chance of getting 10 fluctuations of the
same sign in a row? (2, but watch the Look Elsewhere Effect, to be described later.

Only works in 1D. Can be sensitive to the overall normalization (which we may care less
about than shape mismodeling)

W + 2 Jets, 0 b Tags W + 2 Jets, 0 b Tags
230007 . 2 . —cor o
c I <4000
g I g i [l single Top
w Z g u ' Dt g
® 2000 o  ©3000- DlwsHF | O
© I e ® ' e
o I 3 o [ B w+LF 3
o - N T2000- Mother [N
l E ® : £
$100 5 O - 5
I - 00 z

4 5
2nd Jet A R(j1,j2)



Two (or more) Parameters of Interest

For quoting Gaussian uncertainties

on single parameters. Ellipse AN )
is a contour of 2AInL=1 g N\ e : ]
A ' |, ('Tinner
> % T / \\'\- !
g; / \\\-._ pUUL
‘ , \ —\/_‘¢
<—():I—><—0:]—> ~o \
0, 6 -

Figure 33.5: Standard error ellipse for the estimators @; and 9} In this case the
correlation is negative.

Table 33.2: Ax? or 2AIn L corresponding to a coverage probability 1 — « in the

For displayin g large data sample limit, for joint estimation of m parameters.
J0|nt estimation (1-a) (%) m=1 m=2 m=3
of several parameters 68.27 1.00 230  3.53
> 90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
From the 2011 95.45 4.00 6.18 8.03
PDG Statistics 99. 6.63 9.21 11.34
Review 99.73 9.00 11.83 14.16

http://pdg.lbl.gov/2011/reviews/rpp2011-rev-statistics.pdf
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Parameter 2

1D or 2D Presentation

68%

2.3

Parameter 1
| prefer when showing a 2D plot, showing the

contours which cover in 2D. The
2AInL=1 contour only covers for the
1D parameters, one at a time.

=N

- - UN Iw -
O oL WO A O,

—
TITT[TTT,

t-channel cross section [pb]

(=]

0 0.

CDF Il Preliminary 3.2 fb™

51152253 3.54 45 5
s-channel cross section [pb]
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A Variety of ways to show 2D Fit results

1= CDF + D@ combination
- L=27-54fb"
0.9 N7 ® Combined result
- % SM value
- O CDF l+jets
0.8~ O] CDF dilepton
i A D@
0.7
0.6 68% and 95%
i C.L. contours
0.5
C 1 1 1 1 | 1 i 1 | | 11 1 1 | 1 1 1 1 | 11 1 1 | 1 1 1 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

PRD 85, 071106 f,

negative log-likelihood |

|CDF Run Il preliminary (5.1 fb™) |

)

ncorrected
o
-

e
=)
a

f, (u

o

TTT\IIIITT/IIIIIT]TT’I IIITTTu

-0.05

-0.1

-0.15

-0.2

-0.25 ) TR LT : T
0.6 0.7 0.8

o
2]

0.9
fo (uncorrected)

-l-° -
C (a)
1 D, L=431b"
0.8[
- ® Best-fit value 68% and
0.6 * SM value 95%,
L 0
04- contours
0.2f
0:— __________________________________________________
:i_l 1 1 I 111 I 11 1 | 1 11 | 1 11 I 11 1 I 11 1
0 02 04 06 038 1
f
PRD 83, 032009
0.6~ ] LI PO 100 00 1 B L O 10 0 0 L P PO 0 P L PO 8 L e
- = A log(L) = 0.5 e
RS =+» Alog(l)=2.0 ]
0.4 v Alog(l) =4.5 -
~ 02— —
L
(5 o] == —
02 _ ..................... N

:iCDFIIPreIiminarys.ﬂb'1 '
Lo b o dsadoaaa b b daaaa daag

-0.4
1705 171 1715 172 1725 173 1735 174

http://www-cdf.fnaI.gov/physics/new/top/ZOll,lly\lJPej%lll?iytithg t@trﬂkPSS 2012
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