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Hypothesis Testing

e p-values

e Coverage and Power

e Test Statistics and Optimization

* |ncorporating Systematic Uncertainties

e Multiple Testing (“Look Elsewhere Effect”)

Thus the unfacts, did we possess them, are too imprecisely few to warrant our certitude...
J. Joyce, Finnegan’s Wake



Hypothesis Testing

e Simplest case: Deciding between two hypotheses.
Typically called the null hypothesis H, and the
test hypothesis H,

e Can’t we be even simpler and just test one hypothesis H,?
e Data are random -- if we don’t have another
explanation of the data, we’d be forced to call it a

random fluctuation. Is this enough?
e H, may be broadly right but the predictions slightly flawed
e ook at enough distributions and for sure you’ll spot one
that’s mismodeled. A second hypothesis provides guidance

of where to look.

e Popper: You can only prove models wrong, never

prove one right. All models are wrong;
some are useful.

e Proving one hypothesis wrong
doesn’t mean the proposed alternative must be right.



Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 1: Devise a quantity that depends on the observed
data that ranks outcomes as being more signal-like or
more background-like.

Called a test statistic. Simplest case: Searching for a new
particle by counting events passing a selection requirement.

Expect b events in Hy, s+bin H,.
The event count n, is a good test statistic.

Step 2: Predict the distributions of the test statistic separately
assuming:
H, is true
H, is true
(Two distributions. More on this later)



Frequentist Hypothesis Testing:
Test Statistics and p-values

Step 3: Run the experiment,

get observed value of test a2 6,30
statistic.
0,14
0,12
Step 4: Compute p-value
0,10
p(n=n_, |H,) 905
0,06 +
Example: 0,04 +
Hy:b=u=6 0:02:8
nobs =10 0,00
p_value - 00839 0 2 4 &6 8 1012 14 16 18 20 22 24
But many
. . ] often say that.
A p-value is not the “probability H, is true” Especially the popular medial
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So what is the p-Value?

A p-value is not the “probability H, is true” -- this isn’t even a Frequentist thing to
say anyway. If we have a large ensemble of repeated experiments, it is not true
that H, is true in some fraction of them!

p-values are uniformly distributed assuming that the hypothesis they are testing is
true (and outcomes are not too discretized).

6/6/14

Why not ask the question —what’s the chance N=N_,. (no inequality). Each outcome
may be vanishingly improbable. What’s the chance of getting exactly 10,000 events when
a mean of 10,000 are expected? (it’s small). How about 1 if 1 is expected?

If p < p_: then we can make a statement. Say p_,=0.05. If we find p < p_,, then we
can exclude the hypothesis under test at the 95% CL.

What does the 95% CL mean? It’s a statement of the error rate.

In no more than 5% of repeated experiments, a false exclusion of a
hypothesis is expected to happen if exclusions are quoted at the 95% CL.
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Type | and Type Il Error Rates

(statistics jargon, getting more common in HEP)
* Type | Error rate: The probability of excluding the Null Hypothesis H, when H, is true.
Also known as the False Discovery Rate.

* Type Il Error rate: The probability of excluding the Test Hypothesis H, when H, is true.
The False Exclusion Rate.

Typically a desired false discovery rate is chosen — this is the value of p_,, also known
as a. Then if p < a, we can claim evidence or discovery, at the significance level given

by a.

We discover new phenomena by ruling out the SM explanation of the data!
-- the Popperian way to do it — we can only prove hypotheses to be false.

In some cases neither H, nor H, has any a priori prejudice for it, like the neutrino
mass hierarchy. I’'m not sure which gets called Type | and Type Il in that case; arbitrary.

6/6/14 T. Junk TRISEP 2014 Lecture 3



Common Standards of Evidence

Physicists like to talk about how many “sigma” a result Folklore:
corresponds to and generally have less feel for p-values. 95% CL -- good

for exclusion

o_* n o ”n H H
The number of “sigma” is called a “z-value” and is just 30: “evidence”

a translation of a p-value using the integral of one

tail of a Gaussian

U

50: “observation’
Some argue for
a more subjective

Double_t zvalue = - TMath::NormQuantile(Double_t pvalue) scale.

z-value (o) | p-value
1.0 0.159
2.0 0.0228
3.0 0.00135
4.0 3.17E-5
5.0 2.87E-7
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(1 —erf (Zvalue /2 ))

pvalue =

3
T s
035 [
0 o
T
005 il

(1/SQRT(2+3.1415) JWEXP(~X++2/2)
Tip: most physicists talk about p-values now but hardly
use the term z-value — we use the word “significance” instead
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Why 5 Sigma for Discovery?
From what | hear: It was proposed in the 1970’s when the technology
of the day was bubble chambers.

Meant to account for the Look Elsewhere Effect. A physicist estimated how many
histograms would be looked at, and wanted to keep the error rate low.

Also too many 20 and 30 effects “go away” when more data are collected.

Some historical recollections:
http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance_b_1649808.html

Not all estimations of systematic uncertainties are perfect, and extrapolations
from typical 1o variations performed by analyzers out to 50 leave room for doubt.

Some effects go away when additional uncertainties are considered. Example —
CDF Run | High-E; jets. Not quark compositeness, but the effect could be folded
into the PDFs.

If a signal is truly present, and data keep coming in, the expected
significance quickly grows (s/sqrt(b) grows as sqrt(integerated luminosity)).



Events/0.01 (GeV/c?)
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CLAS Collab., Phys.Rev.Lett. 91 (2003) 252001
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A Cautionary Tale — The Pentaquark “Discoveries”
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Five times the data sample
CLAS Collab., Phys.Rev.Lett. 100 (2008) 052001
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Another Bump That Went Away

A preliminary set of distributions shown at a LEPC presentation

llgq events at LEP2 9 llgq events at LEP2 ’%

m DELPHI has more than 400 pb! collected at LEP2
m Check of the mass spectrum: *Excess in eeqq, when qu~Mz: check Mee

DELPHI PRELIMINARY DELPHI PRELIMINARY

‘72: E DELPHI PRELIMINARY

aa DELPHI PRELIMINARY

5 : w'uaq A e'e’ qq .

1 1 1
M) GeVic* M(ee) Gevic®

qu (after 4C-

| fit)
- DELPHI Status Report 21 M" (With qu in Z region)

- DELPHI Status Report 22

Benefit of having four LEP experiments — at the very least, there’s more data.
This one was handled very well — cross checked carefully.

But, they shared models — Monte Carlo programs, and theoretical calculations.
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The Literature is Full of Bumps that Went Away

See Sheldon Stone, “Pathological Science”, hep-ph/0010295

My personal favorite is the “Split A, resonance”
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Figure 3: (a-c) Evidence for A2 splitting in 7~ p — pX ~ collisions in the two CERN exper-
iments, (d) same as (c) in 5 MeV bins fit to two hypotheses.

Text from Sheldon’s article:

How did this happen? I have heard several possible explanations. In the
MMS experiment, I was told that they adjusted the beam energy so the dip
always lined up! Another possibility was revealed in a conversation I had with
Schiibelin, one of the CBS physicists. He said: “The dip was a clear feature.
Whenever we didn’t see the dip during a run we checked the apparatus and
always found something wrong.” I then asked him if they checked the apparatus
when they did see the dip, and he didn’t answer.

What about the other experiments that did see the dip? Well there were
several experiments that didn’t see it. Most people who didn’t see it had less
statistics or poorer resolution than the CERN experiments, so they just kept
quiet. Those that had a small fluctuation toward a dip worked on it until it
was publishable; they looked at different decay modes or ¢ intervals, etc. (This
is my guess.)
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At Least ALEPH Explained What They Did

No [
“the width of the bins is %‘ s [ Standard Processes ALEPH
designed to correspond to twice - - [ Data (@)
the expected resolution ... and N .
their origin is deliberately chosen g 4L
to maximize the number of £ [
events found in any two > i
consecutive bins” ST
2 -
1 - — — —
: |V N
N
0 ﬁl& ®\§§£Y\§ NL
60 80 100 120 140 160
ALEPH Collaboration, Z. Phys. C71, 179 (1996) IM (GeV/<?)

Dijet mass sum in e*e"—jjjj
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Coverage

A statistical method is said to cover if the Type-| error rate is no more than the
claimed error rate a. Exclusions of test hypotheses (Type-Il errors) also must
cover —the error rate cannot be larger than stated.

95% CL limits should not be wrong more than 5% of the time if a true signal is present.

If the results are wrong a smaller fraction of the time, the method overcovers.
If the results are wrong a larger fraction of the time, the method undercovers.

Undercoverage is a serious accusation — it has a similar impact as saying that the
qguoted uncertainties on a result are too small (overselling the ability of an experiment
to distinguish hypotheses).

Note: Coverage is a property of a method, not of an individual result. In some cases we
may even know that a result is in the unlucky 5% of outcomes, but that individual outcome
does not have a coverage property — only the set of possible outcomes.

The word coverage comes from confidence intervals — are they big enough to contain
the true value of a parameter being measured and what fraction of the time they do.



A More Sophisticated Test Statistic

What if you have two or more

>,
bins in your histogram? Not o2 f @ Observed  me 115 GevIE
just a single counting experiment é o | Eapected for st
any more. 3; plus background .
E 008 — -
Still want to rank outcomes as more S signal-like Jbackground-like
signal-like or less signal-like E“"’B utcomes . | / outcom\_.es
0.04
Neyman-Pearson Lemma (1933): The »
likelihood ratio is the “uniformly 0.02
most powerful” test statistic I T .|
-15 -10 -5 0 5 10 15
-2 In(Q)
L(datalH 1’} yellow=p-value
—21n Q =[/IR=-21n ( L ,\) for ruling out
L(datalH,,v) Ho, Green=
p-value for ruling

out H,

Acts like a difference of Chisquareds in the Gaussian limit

2InQ — Ay’ = x’(data | H,) - x*(data | H,)



A\
A\

What’'s with 17 andV ?

2InQ=LLR=-21In L(datalH,,v)

L(data| H,,v)

We parameterize our ignorance of the model predictions
with nuisance parameters.

A model with a lot of uncertainty is hard to rule out!

-- either many nuisance parameters, or one parameter
that has a big effect on its predictions and whose
value cannot be determined in other ways

maximizes L under H,

<>

maximizes L under H,

<>>



What’s with yyand v ?

A simple hypothesis is one for which the only free
parameters are parameters of interest.

A compound hypothesis is less specific. It may have
parameters whose values we are not particularly
concerned about but which affects its predictions.
These are called nuisance parameters, labeled v.

Example: H,=SM. H,=MSSM. Both make predictions
about what may be seen in an experiment. A nuisance
parameter would be, for example, the b-tagging efficiency.
It affects the predictions but in the end of the day we

are really concerned about H, and H,.



Fit twice! Once assuming H,, once assuming H,

Example: flat background, 30 bins, 10 bg/bin, Gaussian signal.
Run a pseudoexperiment (assuming s+b).

Fit to flat bg, Separate fit to flat bg + known signal shape.
The background rate is a nuisance parameter v ="b

Use fit signal and bg rates to calculate Q.

Fitting the signal is a separate option.

30 o FTT T TN AdE T T T 32137 728
2 ;—get Vv Pl + 9.043 -
: 5.739

: I

i

1o+ %4 * | | | | +lHF 303'""2"""'X'z/I;;'f""'3'7.'3'1')'29'
LR EL A B

e e Qs

mrec 0 5 10 15 20 25 30

0 5 10 15 20 25 30
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p-values and -2InQ

p-value for testing H, = p(-2InQ < -2InQ,,. | H,) 2ol
The yellow-shaded area to the right. % ’
= 0.1
The “or-equal-to” is important here. For highly :T
discrete distributions of possible outcomes — % o
say an experiment with a background rate of S 0.06
0.01 events (99% of the time you observe zero &
events, all the same outcome), then observing 004
0 events gives a p-value of 1 and not 0.01. 0.02
Shouldn’t make a discovery with 0 observed events, 0

no matter how small the background expectation!
(or we would run the LHC with just one bunch
crossing!).

This p-value is often called “1-CL,” in HEP. (apologies for the
notation! It’s historical)

CL, =p(-2InQ 2 -2InQ,,. | H,)

Due to the “or equal to”’s (1-CL,) + CL, # 1

6/6/14 T. Junk TRISEP 2014 Lecture 3

(a) LEP i
—— Observed my, =115 GeV/c
Expected for background

-+ Expected for signal
plus background

Hy

T

0,08 +

0,06 +

0,04 +

0,02 +

0,00 4

For an experiment producing a single
count of events all choices of test
statistic are equivalent. *Usually*
more events = more signal-like.

20



p-values and -2InQ

p-value for testing H, = p(-2InQ 2 -2InQ_, .| H,)

obs

‘ -~ (a)
- Nt L LEP

The green-shaded area to the right. go W e R e

8 [ Expected for background
oy e . o010 Exp.ected for signal
If it is small, reject H, S plus background
o ) . . .i:

The “or-equal-to” has similar effect here too. = 0.08 |
s
2
=
|
=¥

This one is called CL,,, (again, not my choice
of words). p-values are not confidence levels.

=
=
=N
\‘\I
=
I
(=]

0.04 -
Note: If we quote the CL as the p-value, we 0.02 |-
will always exclude H,, just at different CL’s | :
each time. 570 5 o0 5 10 15
-2In(Q)
Lucky outcome: exclude at 97% CL
Do we exclude at the 50% CL?
From which distribution was
No! Set a once and for all (say 0.05). Then the data drawn? We know
coverage is defined. what the data are; we don’t

know what the distribution is!
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More Sensitivity or Less Sensitivity

S

o

R
I

- (b)

S
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K
T

Probability density

0.02

0.01

LEP
m, =110 GeV/c?

signal p-value very small.
Signal ruled out.

-2In(Q)

Possible to exclude both H, and H, (-2InQ=0).
Possible to get outcomes that make you

pause to reconsider the modeling. Say -21nQ<-100

or -2InQ>+100

= L (o) LEP ,
g L my =120 GeV/c
5025 -
= i
20,
=02
© pu( L
=
S
8015 -
=
St
=W

0.1 -

0.05 -

0 f.,»_r.;?-'-":;"/\ o e \‘4‘:':"‘11-,».4 N

6 -4 2 0 2 4 6

-2In(Q)

Can make no statement about
the signal regardless of experimental
outcome.

Unlikely (or implausible) outcomes
are still possible of course!

The usual sensitivity gauge: Median Expected p, if a signal is truly present.

n.b. average p-values tend to be pulled by long tails in the p-value distrib.
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likelihood ratio

LLR Is not only used in Search Contexts — Precision Measurements too!

30.CDF Run Il Preliminary L=1.0fb" «10°__CDF Run |l Preliminary L=1.0M"
= 14
= — combined -
25 = combine 12l D randomly tagged
20 — semileptonic N .
15F  hadronic ol T signal Am=17.77
10 -
5F- 8T
0 ;— 6
SE -
“10E- r
= 5 C
-15E g 2
_20 F 1 1 L L I L L 1 1 I L 1 1 L I 1 L L 1 I L L 1 L | 1 1 L L I 1 L 1 1 | :
0 5 10 15 20 25 30 35 ol
- -30 0
CDF Run Il Preliminary L=1.0f" Amg [ps 1] Alog(L)™
ERS T
20
-
1072
103L , CDF Run Il Preliminary L=1.0fb"
O F
10%E - F = datat1c 4 95%CLlimit  17.2ps’
_5: %-1.5 - 16450 O sensitivity m1.3 ss" A
107 1S 1:_.datai1.645cs lﬂ [ A M A
10°5L 55 < b datax 16456 (stat. only) ’M‘\ ‘r\j '\J’ U’ Vo
. . r ‘ ' |
107 Mixing rate — 0'2 — ’H‘ /
-8 . e N TR ] ity i ]
o more akintoa ¢ G l" } i
10° L L b e b e 1 il | i
20 -5 10 -5 0 ; E A
Alog(L)™" cross section 1E V\‘f \ V-\
measurement -1sf v w\l
By I 1 A o o
0 5 10 15 20 25 30 35
Am, [ps’]
Phys. Rev. Lett 97, 242003 (2006)
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Power

The Type-Il Error Rate is a or less for a method that covers. But | can cover with an analysis
that just gives a random outcome —in a of the cases, reject H,, and in 1-a of the cases,
do not reject H,,.

But we would like to reject H, when it is false.
The quoted Type-Il error rate is usually given the symbol B (but some use 1-B).

For excluding models of new physics, we typically choose $=0.05, but sometimes 0.1 is used
(90% CL limits are quoted sometimes but not usually in HEP).

Classical two-hypothesis testing (not used much in HEP, but the LHC may lean towards it).

H, is the null hypothesis, and H, is its “negative”. We know a priori either H, or H, is true.
Rejecting H, means accepting H, and vice versa (n.b. not used much in HEP)

Example: H,: The data are described by SM backgrounds
H;: Thereis a signal present of strength u>0. Can also be uz0 but most
models of new physics add events. (Some subtract events! Or add
in some places and subtract in others!!)



The Classical Two-Hypothesis Likelihood Ratio

Distinguishing between u=0 (zero signal, SM, Null Hypothesis) and u>0 (the test hypothesis)

Assumption Warning!
Signal rates scale with
a single parameter pu

q,=2In

I is quadratically dependent on
coupling parameters (or worse. More on this later).

L(datalf,v)

L(data | M,lﬁ/)

f(q, 0

J

u,obs

med(q,

l

f(q,w)

/ p-value

q

u

ATLAS performance projections, CERN-OPEN-2008-020
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TT)ymkk HRB Ebasiotiaq bectivess3

~ is the best-fit value
‘u of the signal rate.

Can be zero. Your
choice to allow it to

g0 negative.

Larger q, is more signal-like

q,>0 always because H,
is a superset of H, and
therefore always fits

at least as well.

2525



Wilks’s theorem

If the true value of the signal rate is given by , then g, is distributed according
to a x? distribution with one degree of freedom.

Assumptions: Underlying PDFs are Gaussian (this is never the case)
Systematic uncertainties also complicate matters. If a systematic uncertainty
which has no a priori constraint can fake a signal, then there is no sensitivity
in the analysis.

Example: data = signal + background, single counting experiment.

If the background is completely unknown a priori, there is no way to make any

statement about the possibility of a signal. So q,=0 for all outcomes for all .

Poisson Discreteness also makes Wilkes’s theorem only approximate.

T T T T T T T
@ ATLAS H—>WW (Ojet) | (®
L=10f0"
Altered parameters

1(q0)

L | T T T T T T
ATLAS H— W'W (0jet)
L=101b"

1(q0)

ATLAS performance projections, CERN-OPEN-2008-020

P] I 10°

Lol P T ) el Liowil 4

01 2 3 4 5 6 7 8 9 10 01 2 3 45 6 7 8 9 10

q q
0

Figure 8: The distribution of the test statistic go for H +0j — WW + 0, under the background-only hypothesis,
with the same fixed QCD WW shape parameters used at both the generator and the fit level, for my = 150 GeV
and for an integrated luminosity of 10 fb~! (a) with the same shape parameters for event generation and fitting; (b)
with altered shape parameters. A % xlz distribution is superimposed.
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The “Asimov” Approximation for Computing
Median Expected Sensitivity

We seek the median of some distribution, say a p-value or a limit (more on limits later).

* CPU constraints computing p-values, limits, and cross sections

* Need quite a few samples to get a reliable median. Usually many thousands.

| use the uncertainty on the mean to guess the uncertainty on the median (not true
for very discrete or non-Gaussian distributions

o, =RMS/\n-1
* Often have to compute median expectations many times when optimizing an analysis
But: The median of a distribution is the entry in the middle.
Let’s consider a simulated outcome where data = signal(pred)+background(pred),

and compute only one limit, p-value, or cross section, and call that the median
expectation.

Named after Isaac AsimoV’s idea of holding elections by having just one voter, the “most typical one”
cast a single vote, in the short story Franchise.
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A Case in which the Asimov Approximation Breaks Down

Usually it’s a very good approximation.

Poisson discreteness can make it break down, however.

Example: signal(pred)=0.1 events, background(pred)=0.1 events.
The median outcome is 0 events, not 0.2 events.

In fact, 0.2 events is not a possible outcome of the experiment at all!

For an observed data count that’s not an integer, the Poisson probability must be
generalized a bit (seems to work okay):

rne—r

(n,r)=———
pPozss( ) F(n + 1)
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Some Comments on Fitting

e Fitting is an optimization step and is not needed for
correctly handling systematic uncertainties on nuisance
parameters.

More on systematics later

e Some advocate just using -2InQ with fits as the final
step in quoting significance (Fisher, Rolke, Conrad, Lopez)

e But we do not know the distribution from which the data fit is
drawn — could have gotten “lucky” or not.

e Fits can “fail” -- MINUIT can give strange answers
(often not MINUIT’s fault). Good to explore distributions
of possible fits, not just the one found in the data.



Incorporating Systematic Uncertainties into the p-Value

6/6/14

Two plausible options:
“Supremum p-value”

Choose ranges of nuisance parameters for which the
p-value is to be valid

Scan over space of nuisance parameters and calculate the
p-value for each point in this space.

Take the largest (i.e., least significant, most “conservative”) p-value.

“Frequentist” -- at least it’s not Bayesian. Although the choice of the range

of nuisance parameter values to consider has the same pitfalls as the arbitrary choice of
prior in a Bayesian calculation.

“Prior Predictive p-value”

When evaluating the distribution of the test statistic, vary the nuisance
parameters within their prior distributions. “Cousins and Highland”
P = [ pxIv)pv)dv
Resulting p-values are no longer fully frequentist but are a mixture of
Bayesian and Frequentist reasoning. In fact, adding statistical errors
and systematic errors in quadrature is a mixture of Bayesian and
Frequentist reasoning. But very popular. Used in ttbar discovery, single top discovery.
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Other Possible ways to Incorporate Systematic Uncertainties in P-Values

For a nice (lengthy) review, see

http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf

Confidence interval method
Use the data twice — once to calculate an

interval for a nuisance parameter, and a second time to compute supremum p-values
in that interval, and correct for the chance that the nuisance parameter is outside the
interval.

Hard to extend to cases with many (hundreds!) of nuisance parameters

Plug-in p-value
Find the best-fit values of the uncertain parameters and calculate
the tail probability assuming those values.

Double use of the data; ignores uncertainty in best-fit values of uncertain parameters.
Works best when the data strongly constrain the important uncertainties.
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Other Possible ways to Incorporate Systematic
Uncertainties in P-Values

Fiducial method — See Luc’s note. | do not know of a use of this in a publication

Posterior Predictive p-value

6/6/14

Probability that a future observation will be at least as extreme as the current
observation assuming that the null hypothesis is true.

Advantages: Uses measured constraints on nuisance parameters
Disadvantages: Cannot use it to compute the sensitivity of an experiment you have

yet to run.

In fact, all methods that use the data to bound the nuisance parameters in the
pseudoexperiment ensemble generation cannot be used to compute the
a priori sensitivity of an experiment with systematic uncertainties.

Of course the sensitivity of an experiment is a function of the true values of
the nuisance parameters.
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The Traditional Solution to Large, Uncertain Backgrounds: Sideband Fits

CDF Il 220 pb”’
6000 2300]
2200 ﬁ
\
5000 t‘ 2100 . {
No ".’ 2000 ‘ ?’,.J \\:;: TLs ‘
= o |3 ol ] ‘“‘**‘. L
%4000 T 1900 #7%7 ' % SRS NN
b | U
0 1800 L ,
$30001 | | 380 385 390 3.95
Q
5 |
b o) | & ‘,’.Q. .
2000{ |1 |t e e
O “..,' ?&.’o'o
1000 X(3872)
0 i

3.65 3.70 3.75 3.80 3.85 3.9023.95 4.00
J/yn™n Mass (GeV/c")

Guess a shape that fits the backgrounds, and fit it with a signal.
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The “Neyman Construction” of Frequentist Confidence Intervals

Essentially a
“calibration curve”

e Pick an observable x
somehow related to the
parameter Oyou’d like
to measure

e Figure out what
distribution of observed
x would be for each value
of @ possible.

e Draw bands containing
68% (or 95% or whatever)
of the outcomes

e |nvert the relationship using

the prescription on this page.

Proper Coverage is Guaranteed!

6/6/14

parameter 6

—— (9)

ngeo)

P0851ble experimental values x

A pathology: can get an

empty interval. But the error

rate has to be the specified one.

Imagine publishing that all branching ratios
between 0 and 1 are excluded at 95% CL.
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A Special Case of Frequentist Confidence Intervals: Feldman-Cousins

Each horizontal band contains 68% of

the expected outcomes (for 68% CL
intervals)

But Neyman doesn’t prescribe whic
of the outcomes you need to take!

h 68%

Take lowest x values: get lower limits.

Take highest x values: get upper lim

its.

Cousins and Feldman: Sort outcomes by

the likelihood ratio.
R=1 for all x for some 6.

Picks 1-sided or 2-sided intervals --

no flip-flopping between limits and 2-sided

intervals.

6/6/14

T.Junk TRISEP 2014 Lecture 3

parameter 6

x(8) %0

Possible experimental values x

G. Feldman and R. Cousins,

“A Unified approach to the
classical statistical

analysis of small signals”
Phys.Rev.D57:3873-3889,1998.
arXiv:physics/9711021

No empty intervals!
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Some Properties of Frequentist Confidence Intervals

e Really just one: coverage. If the experiment is repeated many times,
the intervals obtained will include the true value at the specified rate

(say, 68% or 95%).
Conversely, the rest of them (1-a) of them, must not contain the true value.

e But the interval obtained on a particular experiment may obviously be in
the unlucky fraction. Intervals may lack credibility but still cover.

Example: 68% of the intervals are from -2 to +, and 32% of them are empty.
Coverage is good, but power is terrible.

FC solves some of these problems, but not all.
Can get a 68% CL interval that spans the entire domain of 0.
Imagine publishing that a branching ratio is between 0 and 1 at 68% CL.

Still possible to exclude models to which there is no sensitivity.

FC assumes model parameter space is complete -- one of the models in there
is the truth. If you find it, you can rule out others even if we cannot test them

directly.



Treat Nuisance Parameters as Parameters of Interest!

* Somewhat arbitrary distinction, anyhow.

CDF Run Il Preliminary (5.8 fb)

. . L | 1.5_
Although you could argue this is what the L ALn(LL_ ) Contours, 1+ 22-tag events
Scientific Method is all about; separating 5 1
nuisance parameters from parameters of 2 |
interest. as)-
* Really only good if you have one dominant o
source of systematic uncertainty, and you :
want to show your joint measurement “0.5[" X Fitted Valies
. | — -Ln(L/L__)=4.
of the nuisance parameter and the ; L"ELL"‘“; :Z
: - — Le(lL,)=2
parameter of interest. L e )-os
-1'57< I | 1 | I | 1 | l ] 1 ] l ] 1 | I ] 1 ] l I} 1 I} l ] 1 ] I
166 168 170 172 174 176 178 180

6/6/14

M,, [GeV/c]

Doesn’t generalize all that well to many parameters of interest.

Example: top quark mass (parameter of interest), vs.

CDF’s jet energy
events.

T.Junk TRISEP 2014 Lecture 3
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Multiple Testing:

JELLY BEANS WE FOUND NO THAT SETTLES THAT.
CAUSE ACNE! LINK BETWEEN D
T HEAR ITS ONLY
SCIENTISTS! JELLY BEANS A0 A CERTAN COLOR
lNVESﬂG‘“E' AQNE (P> 0.05). THAT CAUSES IT.
BUT WERE \
mm SCIENTSTS
F|NE H'IIIN!('N\FY'
WE. FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUNDNO
LINK BETWEEN LINK BEWEEN | | LINK BETWEEN LINK BETWEEN LINK GETWEEN
PURPLE JELLY BROWN JELLY PINK JELLY BWE Jeuy TEAL JELLY
BEMSPNDP(NE BEANSMDACNE BEPNSPNDANE BEPNSPNDPOIE BEPNSPNDPCNE
p>oos) P>oos) p>o<>5) p>oos) p>oos)
WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUNDNO
LINK BETWEEN LINK GETWEEN LINK BETWEEN LINK BETWEEN LINK GETWEEN
SALMON JELLY RED Jewy TURGUOISE JELLY | | MAGENTA JELY | | YELLOW JELy
BEANS AND ANNE BEANS AND ANE BEANS AND ANE BEANS AND ANNE BEANS AND ANE
(P>005) (P>0.05). (P>005) (P>005) (P>005).
/ / / / /
6/6/14

“Look Elsewher

e”

WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUND A WE FOUNDNO
LINK BETWEEN LINK BETWEEN LINK BETVEEN LINK BETWEEN LINK BETWEEN
GREY JELY TAN JEL OYAN JEuY GREEN JELY MAWVE JELY
BEANS AND ANNE BEANS AND AINE BEANS AND ANNE BEANS AND ANE BEANS AND AINE
(P>005). (P>0.05). (P>005), (P<005) (P>0.05).

/ / / ”/M y /

WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUNDNO WE FOUNDNO
LINK BEWEEN LINK BETWEEN LINK BETWEEN LINK GEWEEN LINK BEWEEN
BEIGE JELLY ULAC JELY BLACK JELLY PEACH JELLY ORANGE JELLY

BEANS AND ANE BEANS AND AINE BEANS AND ANNE BEANS AND ANNE BEANS AND ANE
(P>0.05) (P>0.05) (P>0.05) (P>0.05) (P>0.05).

/ / / / /

T.Junk TRISEP 2014 Lecture 3

= News

To ACNE!]

95« Conﬂom

GREEN JEILY
REANS LINKED

PRy e
SCIENTSTS...

ST :hees L ol
: e . —
o X~

=

xkcd.com

38



The Look-Elsewhere Effect

e Also called the “Trials Factor” or the effect of “Multiple Testing”
e Bump-hunters are familiar with it.

What is the probability of an upward fluctuation as big as the
one | saw anywhere in my histogram?

-- Lots of bins — Lots of chances at a false discovery
-- Approximation (Bonferroni): Multiply smallest p-value by the number of
“independent” models sought (not histogram bins!).
Bump hunters: roughly (histogram width)/(mass resolution)
Criticisms:
Adjusted p-value can now exceed unity!
What if histogram bins are empty?
What if we seek things that have been ruled out already?

Just as easy: The Dunn-Sidak correction, still assumes independence.
Pcorrected = 1- (:I'_pmin)n

6/6/14 T. Junk TRISEP 2014 Lecture 3
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The Look-Elsewhere Effect

More seriously, what to do if the p-value comes from
a big combination of many channels each optimized at each
m, sought?
e Channels have different resolutions (or is resolution even
the right word for a multivariate discriminant?
e Channels vary their weight in the combination as
cross sections and branching ratios change with m,,

Proper treatment -- want a p-value of p-values!

(use the p-value as a test statistic)

Run pseudoexperiments and analyze each one at

each m,, studied. Look for the distribution of smallest p-values.

Next to impossible unless somehow analyzers supply
how each pseudo-dataset looks at each test mass.

6/6/14 T. Junk TRISEP 2014 Lecture 3
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An mternal CDF study that didn’t make 1t to prime time
— dimuon mass spectrum with signal fit ~ ©°teroughPES)

Significance Tests on the Dimuon Mass Bump

1800 [T T T T T T § 70 B D 12
[F] E Entries 1000
- QC-Run 1A + 1B S & F Mean 2310
i = E RMS 84.59
1600 2 0 B
L [ -
.: E
+ Data - OS = 40
1400 - B 30
— Fit E
20
~ E
1200 -5 i E
§ ---- Data - SS N E
O O:Illllllnll_l—lhllllIIIIIIIIIIIII hhhln—l]llll
D) -400 300 200 -100 0 100 200 300 400
E 1000 Fitted events
)
LE 7] (. o I [7:] ) 1o
800— E 70 :_ M':- -::’: E 70 E :I_;. ':”l
S 60 S 60
& E 3
- _ = 50 :— = 50
= E =]
I = 40 = 40
r i 30 F 30
400 F . F
| e . 20 20
r 10 F 10
200 PO TN TN N T Y T N T WY S N T S NN TN U ST WY S ST N ST N ST SO S T N T S ST N ST S T W Y S S T F F
6.5 6.75 7 7.25 7.5 7.75 8 8.25 8.5 8.75 9 0 Co11y l1n 1EEI AN B 0 briy | Bewmia 100
Mass (GeV) -400 -300 -200 -100 0 0 100 200 300 400
Fitted events Fitted events

249.7+60.9 events fit in bigger Null hypothesis pseudoexperiments
signal peak (40? No!) with largest peak fit values

Looks like a lot of spectra in S. Stone’s article
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Looking Everywhere in a m_, plot

e method:

— scan along the mass spectrum in 1 GeV

6/6/14

Probability of the Background Fluctuating to > N_,
steps 2

o

at each point, work out prob for the bkg L

to fluctuate > data in a window centred
on that point

e window size is 2 times the width
of a Z' peak at that mass

T IIIIIIII

sys. included by smearing with Gaussian
with mean and sigma = bkg + bkg error

Prob of fluctuation> N

j L dt = 370 pb”’

T IIIIIIII

20 GeV/c? Window
llIIIIIIllllllIIIIIIlIllllIIIIIIIlll

150 200 250 300 350 400 450

. . . DiElectron Mass (GeVIcz)
use pseudo experiements to determine how often a given probability will

occur e.g. a prob <0.001 will occur somewhere 5-10% of the time
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An Approximate LEE Correction for Peak Hunting

See E. Gross and O. Vitells, Eur.Phys.J. C70 (2010) 525-530.

Approximate formula applies to bump hunts on a smooth background.

Not all searches are like this — Multivariate Analyses are usually trained up

at each mass separately, and there is not a single distribution we can look elsewhere in.

An interesting, very general feature:

As the expected significance goes up, so does the LEE correction

This makes lots of sense: LEE depends on the number of separate

models that can be tested. As we collect more data, we can measure the position

of the peak more precisely.

So we can tell more peaks apart from each other, even with the same reconstruction
resolution.

6/6/14 T. Junk TRISEP 2014 Lecture 3
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Where is “Elsewhere?”

A collider collaboration is typically very large; >1000 Ph.D. students. ATLAS+CMS is another
factor of two. (Four LEP collaborations, Two Tevatron collaborations).

Many ongoing analyses for new physics. The chance of seeing a fake bump somewhere is
large. What is the LEE?

Do we have to correct our previously published p-values for a larger LEE when we add
new analyses to our portfolio?

How about the physicist who goes to the library and hand-picks all the largest excesses?
What is LEE then?

“Consensus” at the Banff 2010 Statistics Workshop: LEE should correct only for those
models that are tested within a single published analysis. Usually one paper covers one
analysis, but review papers summarizing many analyses do not have to put in additional
correction factors.

Caveat lector.



It’s Good To have a Region of Interest

INDIAN

OCEAN 400
knots New search

475 area , AUSTRALIA
469 _\ March 28

Possible ——
routes for

MH370
based | 1,680 km s EOrh

on different A
speeds . Estimated

sea depth:
2,000 - 4,000 m

areas since
March 18
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Running averages Look ElseWHEN

correct answer, but the )

deviations in units of the ©

expected uncertainty have 5 g

a random walk in the b R

logarithm of the number of - 1

trials n 05 |- E

Sam | g

d — k=1 05 |- -

n , ]

1// N A b :

The r, are 1ID numbers drawn 15 | g

from a unit Gaussian. o i v o el i e e v
1 10 10> 10> 10* 10 10® 10" 10®  10°

Trial Number

It’s possible to cherry-pick a dataset with a
maximum deviation. “Sampling to a foregone conclusion”

Stopping Rule: In HEP, we (almost always!) take data until our money is gone. We produce results for the major conferences
along the way. Some will coincidentally stop when the fluctuations are biggest. We take the most recent/largest data sample

result and ignore
(or should!) results performed on smaller data sets. p-values still distributed uniformly from 0 to 1. A recipe for generating
“effects that go away”
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No Discovery and No Measurement? No Problem!

e Often we are just not sensitive enough (yet) to discover

a particular new particle we’re looking for, even if it’s
truly there.

e Or we’d like to test a lot of models (each SUSY parameter
choice is a model) and they can’t all be true.

e |tis ourjob as scientists to explain what we could have
found had it been there. “How hard did you look?”

Strategy -- exclude models: set limits!
e Frequentist

e Semi-Frequentist
e Bayesian



CL, Limits -- extension of the p-value argument

Probability density

o Li f;’fjﬁif::fmbackgilsGewcz (apologies for the notation)
o R o-values:
008 CL, = P(-2InQ = -2InQ,,| b only)
T Green area = CL,,, = P(-2InQ = -2InQ_,,, | s+b)
ooa Yellow area = “1-CL,” = P(-2InQ=-2InQ_, .| b only)
0.02 7/
ofpyey CL,=CL,,,/CL, 2 CL,,
-2In(Q) Exclude at 95% CL if CL,<0.05
Scale r until CL=0.05 to get r, «—  Thisstep
e Advantages: can take
e Exclusion and Discovery p-values are consistent. Sé'ga'ﬁcant

Example -- a 20 upward fluctuation of the data
with respect to the background prediciton appears
both in the limit and the p-value as such
e Does not exclude where there is no sensitivity
(big enough search region with small enough resolution
and you get a 5% dusting of random exclusions with
CI's+b)
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Overcoverage on Exclusion

Coverage: The “false exclusion rate” should 2 00T
be no more than 1-Confidence Level é 006 = E

éo.os : Pt ettt
In this case, if a signal were truly there, @00 - .
we’d exclude it no more than 5% of the time. 2 °%® = ) E
“Type-Il Error rate” Excluding H, when it is § ZZT 3 E
true = T R R TR T T T

1 2 3 4 5 6 7 8 9 10
Signal rate (events)
Exact coverage: 5% error rate (at 95% CL)

Overcoverage: <5% error rate
Undercoverge: >5% error rate

T. Junk, NIM A434 (1999) 435.

Overcoverage introduced by the ratio CL=CL,,,/CL,
It’s the price we pay for not excluding what we have no
sensitivity to.

No similar penalty for the discovery p-value 1-CL,.
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6/6/14

A Useful Tip about Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, then the limit will
be 3 signal events.

0_
re’

-r

=e

pPoiss(n = 0,7') =

If p=0.05, then r=-In(0.05)=2.99573

You can discover with just one event and very low background, however!
Example: The Q  discovery with a single bubble-chamber picture.

Cut and count analysis optimization usually cannot be done simultaneously
for limits and discovery.

But MVA’s take advantage of all categories of s/b and remain optimal in both cases;
but you have to use the entire MVA distribution

T.Junk TRISEP 2014 Lecture 3
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Rule of Three

From Wikipedia, the free encyclopedia

Rule of three may refer to:

* Rule of three (aviation), a rule of descent in aviation

« Rule of three (C++ programming), a rule of thumb about class method definitions

* Rule of three (computer programming), a rule of thumb about code refactoring

+ Rule of three (economics), a rule of thumb about major competitors in a free market

+ Rule of three (mathematics), a computation method in mathematics

« {Rule of three (medicine); for calculating a confidence limit when no events have been observed %
+ Rule of Three (Wicca), a tenet of Wicca

« Rule of three (writing), a principle of writing

e Rule of Three, a series of one-act plays by Agatha Christie

See also

« Rule of thirds, a compositional rule of thumb in photography
« Rule of thirds (diving), a rule of thumb for scuba divers
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Exclusion Sensitivity

The usual figure of merit: median expected limit if a signal is truly absent.

again — average limits are pulled by tails in the distribution

----- expected /_/./
BT b R s OPAL’s flavor-independent Higgs search.
_/ - Some search channels valid at some m and
not others (MC and ECM availability)
IRy . w N | Median expected limit shown as dashed line.
oy = Distribution of expected limits assuming no
/7/ signal shown in green and yellow bands.
2| '|10q| ll 'i'1q5||l ';'10: .
10 20 40 60 80 100 120
m, (GeV)

An analysis that’s optimized for exclusion need not be optimized for discovery.

Need 3 expected events to exclude, but you can discover with 1 event if the background
expectation is low enough. MVA’s separate events in categories of s/b, so they are the
best way to optimize for both.
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Reasons for Another Kind of Probability

e So far, we've been (mostly) using the notion that probability is
the limit of a fraction of trials that pass a certain criterion to total trials.

e Systematic uncertainties involve many harder issues. Experimentalists

spend much of their time evaluating and reducing the effects of
systematic uncertainty.

e We also want more from our interpretations -- we want to be able to make
decisions about what to do next.

e Which HEP project to fund next?
e Which theories to work on?

e Which analysis topics within an experiment are likely
to be fruitful?

These are all different kinds of bets that we are forced to
make as scientists. They are fraught with uncertainty,
subjectivity, and prejudice.

Non-scientists confront uncertainty and the need to make decisions too!



Bayes’ Theorem

Law of Joint Probability:

p(A and B) = p(A|B)p(B) = p(B|A)p(A)
Events A and B interpreted to mean “data” and “hypothesis”
L(data | {6))7(6)

| —
p(10} I data) f L(data | {60'V)7x({6'V)d{6"

{x} = set of observations
{0} = set of model parameters

A frequentist would say: Models have no “probability”. One model’s true,
others are false. We just can’t tell which ones (maybe the space of considered
models does not contain a true one).

Better language:

describes our belief in the different models parameterized by {v}



Bayes’ Theorem

is called the “posterior probability” of
P ({H} | data) the model parameters

gt ({6}) iscalled the “prior density” of the model parameters

The Bayesian approach tells us how our existing knowledge before we do the
experiment 1s “updated” by having run the experiment.

This is a natural way to aggregate knowledge -- each experiment updates
what we know from prior experiments (or subjective prejudice or some
things which are obviously true, like physical region bounds).

Be sure not to aggregate the same information multiple times! (groupthink)
We make decisions and bets based on all of our knowledge and prejudices
“Every animal, even a frequentist statistician, is an informal

Bayesian.” See R. Cousins, “Why Isn’t Every Physicist a Bayesian”,
Am. J. P., Volume 63, Issue 5, pp. 398-410



How | remember Bayes’s Theorem

p(datalhypothesis) x p(hypothesis)

p(hypothesis|data) =

[
=l

p(data)
1

“Prior belief

Posterior “PDF” Likelihood Function distribution”

(“Cl'edibﬂity”) (“Bayesian Update”)

Normalize this so that

/p(hypothesis|data)d(hypothesis) =1

for the observed data
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Bayesian Limits

Including uncertainties on nuisance parameters v

, Typically z{r) is constant
L'(datalr) = fL(data |7,v)7t(V)dV  other options possible.

Sensitivity to priors a

where 71(6) encodes our prior belief in the values of concern.

the uncertain parameters. Usually Gaussian centered on

the best estimate and with a width given by the systematic.

The integral is high-dimensional. Markov Chain MC integration is
quite useful! Look up “Metropolis-Hastings Algorithm” on Wikipedia

Useful for a variety of results: T
A CDF Run Il Preliminary, L=3.6 fb" Mean 0.5284
:’ 1 ob g RMS 0.4487
T serve
Limits: g 0l Limit
Nim ‘™
c L
[ L'(data | Py (r)dr S o =160
L2
095 = 0(2 E 0.4
2
e
fL,(data | F)Jl’(l”)dl’ = 0-2:— / 5% of integral
0 001\1\*4411 |
1 2 3 4 5
o*BR/SM =T
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Bayesian Cross Section Extraction

S handli f
ame hanciing o L'(datar)= [ L(data|r,v)m(v)dv
nuisance parameters
as for limits
Thigh —
The measured _ *+(Thigh = Tmax )
fL'(data | r)ot(r)dr cross section r max—(r._. )

0.68 = L and its uncertainty
[ L'(data\r)z(r)dr
0

CDF Run Il Preliminary, L=3.2 fo'!

+0.8
Og =16 5, pb

Usually: shortest interval containing 68%
of the posterior

(other choices possible). Use the word
“credibility” in place of “confidence”

Marginalized Posterior (arb units)

If the 68% CL interval does not contain zero, then .
the posterior at the top and bottom are equal o4#0, ()
in magnitude.

The interval can also break up into smaller pieces! (example: WW TGC@LEP2
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Coping with Systematic Uncertainty

e “Profile:”
« Maximize L over possible values of nuisance parameters
include prior belief densities as part of the ¢ function
(usually Gaussian constraints)

e “Marginalize:”
 Integrate L over possible values of nuisance parameters
(weighted by their prior belief functions -- Gaussian,
gamma, others...)
* Consistent Bayesian interpretation of uncertainty on nuisance
parameters

« Aside: MC “statistical” uncertainties are systematic uncertainties
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Parameter Estimation — Marginalize or Profile?

T 0F T ]
;—_’ o5 7 o cp)rbesd;f‘t;g 7 - W-+Jets, NN Discriminant CDF Il Preliminary 7.5 fb™
r B '(7) =
20 : : GCJ |
E = +0.57
15 i ] O 0.01 Osu = 3-04 53 pb
10 | ) E > Assuming m _ =172.5 GeV/c?
- Predicted =10, =
5F  Observed=15 E %
0 N S R E N R QO
-3 -2 -1N 0 o 1t 2_t . o
uisance Parameter v (units of o
v )% 5005
-8 L Ie)
g o | &
= 1 %
@]
B o
] 0 X " 1 A A A
*: 0 2 4 6 8
. Single Top Quark Cross Sectiono_,,[pb]
. vy ey
0-3 -2 -1 0 1 2 3

Nuisance Parameter v (units of o)

If Pred = 10 ;, and obs=15, then the likelihood would have one maximum,
but it would have a corner. MINUIT may quote inappropriate uncertainties as the
second derivative isn’t well defined.

The corner can be smoothed out — See But | know of no way

R. Barlow, http://arxiv.org/abs/physics/0406120, to get rid of the double-peak
http://arxiv.org/abs/physics/0401042 Nor should there be a way --
http://arxiv.org/abs/physics/0306138 it can be a real effect. See the LEP2 TGC measurements
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Even Bayesians have to be a little Frequentist

e A hard-core Bayesian would say that the results of an
experiment should depend only on the data that are observed,
and not on other possible data that were not observed.

Also known as the “likelihood principle”

e But we still want the sensitivity estimated! An experiment

can get a strong upper limit not because it was well designed,
but because it was lucky.

How to optimize an analysis before data are observed?

So -- run Monte Carlo simulated experiments and compute
a Frequentist distribution of possible limits. Take the median--
metric independent and less pulled by tails.

But even Bayesian/Frequentists have to be Bayesian:

use the Prior-Predictive method -- vary the systematics on eachc
pseudoexperiment in calculating expected limits. To omit

this step ignores an important part of their effects.



Even Bayesians have to be a little Frequentist

<o} 3 ]
We would like to know how the cross S 28 W 8% Confidence Interval
. . . (8] o .
section calculations behave in Q26 95% Confidence Interval ... .
an ensemble of possible experimental @241 _ S ———
outcomes. S oo i
T
2 2
=3 : i i :
Procedure: @ 18 i i
Q : i i ;
=

1_6 ...............
* Inject a signal. :

* Vary systematics on each
pseudoexperiment (which
integrates over them in the ensemble)
 Calculate Bayesian cross section for each
outcome and plot distribution.
* Black line is the median, not the mean
* Check the width of the distribution against

1.8 [
12 |l
0.8
0.6
0.4

0.2

the quoted uncertainties. Specifically, the 90 02 04 06 08 1 12 14 16 18 2
distribution of Input Cross Section
(meas-inject)/uncertainty This is in fact a Neyman construction!
Should be a Unit-width Gaussian (when not Can do Feldman-Cousins with this

up against zero). (correct for fit biases, if any).
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Advantages and Disadvantages of Bayesian Inference

« Advantages:
» Allows input of a priori knowledge:
 positive cross-sections
 positive masses
* Gives you “reasonable” confidence intervals which don’t
conflict with a priori knowledge
» Easy to produce cross-section limits
* Depends only on observed data and not other possible data
» No other way to treat uncertainty in model-derived parameters
* Disadvantages:
» Allows input of a priori knowledge (AKA “prejudice”)
(be sure not to put it in twice...)
« Results are metric-dependent (limit on cross section or
coupling constant? -- square it to get cross section).
« Coverage not guaranteed
 Arbitrary edges of credibility interval (see freq. explanation)
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A Dilemma - Can’t we test just one model?

Something experimentalists come up with from time to time:

* Make distributions of every conceivable reconstructed quantity

* Compare data with Standard Model Predictions

e Use to test whether the Standard Model can be excluded

* Example: CDF’s Global Search for New Physics Phys.Rev. D 79 (2009) 011101

The case for doing this:

* We might miss something big and obvious in the data if we didn’t
» Searches that are motivated by specific new physics models may point us

away from actual new physics.
More potential for discovery if you look in more places.
Example: Discovery of Pluto. Calculations from Uranus’s orbit perturbations were

flawed, but if you look in the sky long enough and hard enough you’ll find stuff.
Even without calculations it’s still a good idea to look in the sky for planetoids.



Testing Just One Model — Difficulties in Interpretation

* Look in enough places and you’ll eventually find a statistical fluctuation
-- you may find some new physics, but probably also some statistical
fluctuations along the way.

This is straightforward to correct for — called the “Trials Factor” or the “Look Elsewhere
Effect”, or the effect of multiple testing. To be discussed later.

* More worrisome is what to do when systematic flaws in the modeling are discovered.

Example: angular separation between

the two least energetic jets in three-jet 3j 3'pr < 400 GeV — et
6000_ (| Over_laiq fevenots:m%
events. [ Pythiajy : 0.1%
0 [ | Pythiabj:3.9%
n \ Pythia jj : 95.9%
. . c L o®
Not taken as a sign of new physics, but :’:4000_
rather as an indication of either 5 m
generator (Pythia) or detector simulation 8 i |
(CDF’s GEANT simulation) mismodeling. §2°°°__
Or an issue with modeling trigger biases. < o
Each of these is a responsibility of a different Ol T T 21 .
group of people. AR(j2,i3)

Phys.Rev. D79 (2009) 011101



Testing Just One Model — Difficulties in Interpretation

* Need a definition of what counts as “interesting” and what’s not. Already, using
triggered events at a high-energy collider is a motivation for seeking highly-energetic
processes, or signatures of massive new particles previously inaccessible.

* Analyzers chose to make 2P, distributions for all topologies and investigate the
high ends, seeking discrepancies.

We just lost some generality! Some new physics may now escape detection.

But we now have alternate hypotheses — no longer are we just testing the SM
(really our clumsy Monte Carlo representation of it).

Boxed into a corner trying to test just one model

* Of course our MC is wrong (that’s what systematic uncertainty is for)
* Of course the SM is incomplete (but is it enough to describe our data?)

But without specifying an alternative hypothesis, we cannot exclude the null
hypothesis (“maybe it’s a fluctuation. Maybe it’s mismodeling.”)



The Most Discrepant 2P, distributions
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= | BN Other 5 | I Other '
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like-sign dileptons, missing p; — modeling of fakes and mismeasurement

is always a question.
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Searching for Everything All at Once

* A global search also is less optimal than a targeted search
* Targeted searches can take advantage of more features of the signal
(and background) processes than just particle content and ZP;.
* The Global search suffers from a much larger Look-Elsewhere Effect
* The Global search may not benefit as much from sideband constraints
of backgrounds, although CDF’s did adjust some non-new-physics nuisance
parameters to fit the data the best.

* Global Search distributions must be hidden from blind analyzers — they unblind
everything.

In practice, this isn’t much of a problem due to different event selection criteria

In spite of all of the difficulties, it is still a good idea to do this. We absolutely
do not want to miss anything.

But a signal of new physics would have to be pretty big for us to stumble on it.
It’s hard to manufacture serendipity.



Consequences of Not Fitting

See Favara and Pieri, hep-ex/9706016

They found that channels, or bins within channels are better off being neglected
in the interpretation of an analysis in order to optimize its sensitivity.

If the systematic uncertainty on the background b exceeds the expected signal s,

then that search isn’t of much use. Fitting backgrounds helps constrain them however,
and sidebands with little or no signal still provide useful information, but you have

to fit to get it.

We also initially tried running LEP-style CL, programs on the Tevatron Higgs searches,
and got limits that were a factor of two worse than with fitting. The limits with
fitting matched older ones done by a Bayesian prescription (more on that later)



Fitting Nuisance Parameters to Reduce Sensitivity to Mismodeling

No Bac

I Bdckground*0.8
e
-10 0 10
-2InQ

kground Fit

Still some sensitivity in PDF’s

3000

Means of PDF’s of -2InQ
very sensitive to background
rate estimation.
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Fitting and Fluctuating

CDF Run Il Preliminary, L = 3.2 fb
0° | '

—_

L(datalH,,v)

s
o

eriments

—2InQ=LLR=-2In

p

iy
o

L(datal H,,v)

Pseudo-Ex
<

* Monte Carlo simulations
are used to get p-values.

e Test statistic -2InQ is not uncertain
for the data.

e Distribution from which -2InQ is

"800 200 -it0 0 100 drawn is uncertain!
Test Statistic [-2In(Q)]

—_
o

e Nuisance parameter fits in numerator and denominator of -2InQ do not incorporate
systematics into the result.
Example -- 1-bin search; all test statistics are equivalent to the event count, fit or no fit.

e Instead, we fluctuate the probabilities of getting each outcome since those are
what we do not know. Each pseudoexperiment gets random values of nuisance parameters.

e Why fit at all? It’s an optimization. Fitting reduces sensitivity to the uncertain true
values and the fluctuated values. For stability and speed, you
can choose to fit a subset of nuisance parameters (the ones that are constrained
by the data). Or do constrained or unconstrained fits, it’s your choice.

e If not using pseudoexperiments but using Wilk’s theorem, then

the fits are important for correctness, not just optimality.
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An interesting Bias Bill Murray Showed at

The Next Stretch of the Higgs Magnificent Mile Conference

Seek a bump on a smooth background

Example: LHC (or Tevatron) H=>yy search.

Allow m, to float and pick the m,, that
maximizes the fitted cross section.

The fitted cross section will be biased
upwards and the position resolution

of “lucky” outcomes will be worse than
unlucky ones even if a signal is truly
present.

Why? A true bump can coalesce with
a fluctuation either to the left or to the

right of the bump (two chances to fluctuate

upwards).

Events /1 GeV

Data - Bkg model

800

700

600

500

400

300

200

100

1 r rr ] 7

Inclusive diphoton sample

Data 2011
Background model
SM Higgs boson m, =120 GeV (MC)

\s=7TeV, J- Ldt=4.9fb"
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Effect can be substantial! Calibrate with simulated experimental outcomes (FC).
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Choosing a Region of Interest

* | do not have a foolproof prescription for this, just some thoughts.

* Analyses are designed to optimize sensitivity, but LEE dilutes sensitivity. There is a
penalty for looking for many independently testable models. Can we optimize this?

* But you should always do a search anyway! If you expect to be able to test
a model, you should.

* Testing previously excluded models? We do this anyway, just in case some new physics
shows up in a way that evaded the previous test.

* There is no such thing as a model-independent search. Merely building the LHC or the
Tevatron means we had something in mind. And the SM (or just our implementation
of it) is wrong, but possibly not in a way that is both interesting and testable.



Blind Analysis

e Fear of intentional or even unintentional biasing of results
by experimenters modifying the analysis procedure after
the data have been collected.

e Problem is bigger when event counts are small -- cuts
can be designed around individual observed events.

e |deal case -- construct and optimize experiment before the
experiment is run. Almost as good -- just don’t look at the data

e Hadron collider environment requires data calibration of
backgrounds and efficiencies

e Often necessary to look at “control regions” (“sidebands”)
to do calibrations. Be careful not to look “inside the box”
until analysis is finalized. Systematic uncertainties must be
finalized, too!



Non-Blind Analyses

* More of a concern, but many factors keep analyzers from selecting (or excluding) only
their favorite events

» Standardized jet definition. Jet energy scale, resolution, modeling is typically
approved for a small number of jet algorithms and parameter choices

* Jet and lepton E; and n requirements are typically standardized so previous
signal efficiency and background estimate tools can be re-used.

* Changes to an analysis — new selection requirements, or new MVA’s must be
justified in terms of improved sensitivity (better discovery chances, lower
expected limits, or smaller cross section uncertainties)

-- Still possible to devise many improvements to an analysis, all of which improve
the sensitivity, but only those that push the observed result in a desired direction
are chosen. We frequently discuss all kinds of improvements so it is not that
frequent that we throw a good one away for an unjustifiable reason.

-- Always a concern — Analyzers keep working and fixing bugs until they get the
answer they like, and then stop. We would like review to be exhaustive!

A special case — re-doing an analysis with a slightly larger data set.
Good practice for future work. If a flaw was found in the previous work, all the better!



Run:event 7402: 7722 Date 960807 Time 183402Ctrk(N= 1 Sump= 44.8) Ecal(N= 10 SumE= 96.4) Hcal (N= 6 SumE=
Ebeam 80.50Q Evis 145.7 Emiss 15.3 Vtx ( 0.00, 0.00, 0.00) Muon(N= 3) Sec Vtx(N= 0) Fdet(N= 0 SumE=
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Bz=4.027 Bu

chlet 2/1 Thrust=0.9928 Aplan=0.0000 Oblat=0.1026 Spher=0.0141

Centre of screen is ( 0.0000,

0.

0000,

0.0000)

200. cm.

510 20 50 GeV
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Run:event [7402: 7722 Dateg 960807 Time 183402Ctrk(N= 1 Sump= 44.8)

wrehtet—~=2/2 Thfust=0.9928 Aplan50.0000 Oblat=0.1026 Sph

N= 10 SumE= 96.4) Hcal (N= 6 SumE=
Ebeam 80.500 Evis 145.7 Emiss 15.3 Vtx ( .00, 0.00, 0.00) Muow(N= 3) Sec Vitx(N= 0) Fdet(N= 0 SumE=

6.6)| /7,

0.0

Centre of scrpen is ( 22.5000, 0.0000, 0.0000)
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Run:event 7402: 7722 Date 960807 Time 183402Ctrk(N= 1 Sump= 44.8) Ecal (N= 10 SumE= 96.4) Hcal(N= 6 SumE= 6.6)

Bz=4.027 Burichlet 2/2 Thrust=0.9928 Aplan=0.0000 Oblat=0.1026 Spher=0.0141

X
q =z
Y
: 200. cm. 510 20 50 GeV 1
Gentre of screen is ( 0.0000, 0.0000, 0.0000) \ \ \ [T \
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Ebeam 80.50Q Evis 145.7 Emiss 15.3 Vtx (  0.00, 0.00, 0.00) Muon(N= 3) Sec Vtx(N= 0) Fdet(N= 0 SumE= 0.0) Q @
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Run:event 7402: 5725 Date 960807 Time 182921 Ctrk(N= 2 Sump= 27.2) Ecal (N= 15 SumE= 40.4) Hcal (N=11 SumE=
Ebeam 80.500 Evis 65.5 Emiss 95.5 Vix (  0.00, 0.00, 0.00) Muon(N= 0) Sec Vix(N= 0) Fdet(N= 0 SumE=
Bz=4.027 Bunchlet 1/1 Thrust=0.8173 Aplan=0.0012 Oblat=0.5076 Spher=0.4026

G. Wilson’s
event

from
OPAL

Centre of screen is (_0.0000, 0.0000, 0.0000)



Asymmetric Uncertainties and Priors

Measurements, and even theoretical calculations, frequently are assigned
asymmetric uncertainties:

Value = 10*2 ;, or more extremely, 10*2,, (ouch). When the uncertainties have the
same sign on both sides, it is worthwhile to check and see why this is the case.

. . . _ . 6000 CDF Il 220 pb™!
Example — we seek a bump in a mass distribution by counting zzoo
00 I
events in a small window around where the bump is sought. 5000 | L0 ;”;
"o 1 2000{, , b \unty
. . . 240001 | ool T
The detector calibration has an energy uncertainty = .
. . . ) 380 385 390 3.95
(magnetic field or chamber alighment for tracks, 0%
or much larger effect, calorimeter energy scales for jets). ézooo IS
o J e
. L . . 1000] X(3872)
Shift the calibration scale up — predicted peak shifts out of the

window = downward shift in expected signal prediction. 0
3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

Jiyn™n Mass (GeV/cz)
Shift the calibration down — predicted peak shifts out of the other
side of the window = downward shift in expected signal prediction
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Treatment of Asymmetric Uncertainties

These cases are pretty clear — the underlying parameter, the energy scale, has a
(Gaussian? Your choice) distribution, while it has a nonlinear, possibly non-monotonic
impact on the model prediction.

The same parameter may have a linear, symmetrical impact on another model prediction,
and we will have to treat them as correlated in statistical analysis tools.

Treatment is ambiguous when little is known why the uncertainties are
asymmetric, or it is not clear how to extrapolate/interpolate them.

See R. Barlow,

“Asymmetric Systematic Errors”, arXiv:physics/0306138
“Asymmetric Statistical Errors”, arXiv:physics/0406120
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Quadratic Impacts of Asymmetric Uncertainties
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Quadratic Impacts of Asymmetric Uncertainties
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