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The Tevatron and Associated Accelerators

FERMILAB'S ACCELERATOR CHAIN
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Cockroft- Linac Booster

Walton

pbar debuncher
and accumulator

ppbar collisions at 1.96 TeV
Luminosity up to 400E30 cm2s?
A very good week: ~80 pb!
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The CDF and DO Detectors

Muon systems
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CDF Run Il Trigger
System

Bunch Crossing Rate: ~1.7 MHz
Level 1 trigger ~15 KHz

tracking
calorimeter: jets & electrons

muons

Level 2 trigger ~800 Hz
L1 information (tracks, e, u)
calorimeter shower max
silicon information
algorithms run in L2 processor

Level 3 trigger ~200 Hz to tape
full detector readout
event building
¢ offline” processing

CDF Detector Components K. Pitts
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Hundred

working together, passing and processing
data on the nanosecond timescale...

System continually
upgraded to deal with
increasing luminosity/




The Large Hadron Collider at CERN from the air

R T ST

Re-uses the 27 km LEP tunnel Strong superconducting magnets for
pp collisions at 7, 8, and 13-14 TeV
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The ATLAS Detector at the LHC

Muon Detectors Electromagnetic Calorimeters
) Forward Calorimeters
Solenoid
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CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
Overall diameter :15.0 m Pixel (100x150 pm) ~16m* ~66M channels

Overall length :28.7m Microstrips (80x180 ym) ~200m? ~9.6M channels
Magnetic field :3.8T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m* ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)

Brass + Plastic scintillator ~7,000 channels
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A Slice Through CMS

I | | | 1 | | |
om m 2m im 4m 5m 6m /m
Key:
Muon
Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

) Electromagnetic
)5’ ]' Calorimeter
/4

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS
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A Couple of Di-Jet Events at a Hadron Collider

Some Contributing Processes:

Most events are like this.

27 2 93 2y 3
PP P Ry 16 %y

\

4

Also: three or more
jets possible.



Non-Uniform Detector Response: Jet Energy Response for CDF

B=(2+<APtF>)/(2- <APtF>) JET20
o 13— ; . g Data are more useful if

1.9F ’ : some kinds of effects

g are calibrated out, like
1'1;— ha this one.

16

0.9k Energy resolution is better

- 5 : if all jets have the same
0.8 . : energy scale.
0_75 e JetClu R=04 ; \.

- 4 JetClu R=07 :
0-6 ?_ - JetCIu ,,,,, . - .
R R T b

A conundrum:

Calibrations and corrections may fail to fully do their job

Underlying detector performance may be mismodeled in the MC
Easiest to understand modeling issues when the data are not corrected
“Unfolding” can introduce model dependence that’s hard to undo
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A Di-Photon Event Collected by CDF

Some common nonresonant processes
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A rare but exciting process:
Higgs boson production and decay:

g
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Some Processes are Much More Rare than Others

Tevatron Run I, pp at Vs = 1.96 TeV
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Data Processing Flow

Detector — Raw Signals are Digitized
Trigger — Some Collisions Retained, Most Discarded
Online Monitoring — Data Quality
Storage — Disk and Tape
* Splitting data into separate streams depending on trigger types
targeting specific event signatures
Reconstruction
* Digitized hits are clustered, energies summed, helical tracks fit to
observed signals
* Particle identification algorithms: jets, leptons, missing energy
* Displaced vertex identification
Calibration using reconstructed objects
Re-Reconstruction using calibration
Analysis

Each collision event is independent of all others. “Embarrassingly Parallel!”




Monte Carlo (“MC”) Simulation

Science output needs a comparison of the data with predictions.

Many uses:
* Design the Experiment: Which sorts of signals is the equipment most sensitive to?
How do we build our experiment to meet our goals?
* Develop Reconstruction Algorithms
* Predicting signal and background data yields
* Need input from theoretical calculations and other experiments
* Need detailed simulation of experimental apparatus and trigger
* Once data are available, use data control samples to “tune” Monte Carlo
predictions.
* |deally some predictions of signals and backgrounds are entirely
“data-driven”, but there’s usually an extrapolation step from one sample
to another, and that needs MC.

 Most (all?) systematic uncertainties in particle physics analyses enter via the
signal and background predictions.

* Frequently need many alternate MC samples to estimate systematic uncertainties



LHC Experiments’ Multi-Tiered Computing Infrastructure

200Hz - 400Hz Event Summary Data (ESD): ~| MB/evt
RAW: ~|.7-1.1MB/evt Analysis Object Data (AOD): ~100 kB/evt
derived data (dESD, dAOD, NTUP...)
Calibration distributed he Grid
| o istributed over the
W= CERN )
'&\ oA Analysis
B ? Facility
Tier-0
-

Data Recording to tape
First Pass Processing

|0 Tier-1 centers
RAW data copy on tape
Analysis data on disk
Reprocessing

38Tier-2 centers
(~80 sites)
Analysis data on disk
User Analysis
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Global WLCG Sites in Europe, the Americas, Asia, Australia

Current WLCG sites
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>150 computing centers in nearly 40
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http://wlcg.web.cern.ch/
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WLCG Data Handling Rate

http://wlcg.web.cern.ch/
10 GB/second data analysis throughput,

and the LHC is not even taking data!

2> PB per year ' Transfer Throughput
produced by ’ 2014-02-26 04:10 to 2014-02-27 04:10 UTC

the LHC
Experiments

15k 1

~3000 Collaborators
each on ATLAS, CMS

Throughput (MB/s)
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- alice W atlas cms B9 Ihch
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ATLAS: Before the 2012 Higgs Observation, up to 150,000 jobs running at a time

CMS: Similar CDF maxed out at ~10K jobs
runnning simutaneously

Running jobs
212 Days from Week 01 of 2012 to Week 31 of 2012
L] L]
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Maximum: 154,378 , Minimum: 35,776 , Average: 114,517, Current: 137,942



A Very Nice Dimuon Event from CMS

The Drell-Yan Process

hs ORO1S5 T,

And Vector-Boson Fusion
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Dimuon Mass Spectrum in a Small Initial Data Sample

= - trigger paths
2 10°F 2011 Run,L=1.11fb" Iy my
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Triggers have different acceptances for different mass ranges
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsMUO#Full_invariant_mass_spectrum_of
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Partially Reconstructed W*—>|*v Bosons (missing the neutrino!)

CMS preliminary 2010 \s =7 TeV
> i 1 I I | I 1 I I I I I I I I I I I 1 I I I I I |
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Measurement of the Forward-Backward Asymmetry of W Bosons with DO

Tevatron: p-pbar collider

u
"

Q|

1

Forward-Backward Asymmetry

comes largely from the difference

between u and d PDF’s.
The compton

diagram gq—=>Wq also participates.

N*(n)— N~ (n)

A(n) =

due to neutrino solution.
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g accounts for the charge misidentification rate, determined with like-sign
Z->uu candidate events. Solenoid reversal results are consistent.

T. Junk CoDA HEP



“On-Off” Example

Select events with J/P(=21l) m*rt candidates. Lots of nonresonant background

whichis poorly understood a priori, but there’s a /ot of it.

CDF Il 220 pb™'
6000 2300 q
2200 fl‘\
\
5000 | 2100 .' T
o |‘| 2000{, ¢, it \ut nl
S ¢ et . T “"-x?_ .o
24000| g0l [T e s
p | U
0 1800
$30001 | | 380 3.85 3.90 3.95
Q
© \
i) | .
-§2000 : T‘ o.“""’o"“‘ 0...;000‘ ’5.‘.'5"‘..‘0000.9.‘“'!
O .“." ..l.—‘.".
10001 X(3872)
0 ]

3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

Jiyn ' Mass (GeV/ce)

Guess a shape that fits the backgrounds, and fit it with a signal.

3/5/14
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Typical strategy:
Fit the background
outside of the
signal peak,

and interpolate
the background
under the signal

to subtract
it off.

The ratio of events
in the sidebands

to the background
prediction under
the signal is called t

28



“Weak” Sideband Constraints

o~ 6
N (o)
0 1 ik nﬂ 0o, 1. n” H]nrmn
Ny 5.8 6.4 7
) M(J/Y¥Q"), Flight(Q~ > 0. 5
E o E (/1ﬁ ) ight( ) cm CDF’s Q, observation
S s (b) paper:
2 F
L ﬂ H S H . Phys.Rev. D80 (2009) 072003
5.8 6.4 6.6 7
M(J/«,m ) Flight(Q™) > 2 om
1.5
, E (c)
Oss 6 62 64 66 68 g
M(J/¥Q7) GeV/c

FIG. 8 (a,b) The invariant mass distribution of J/v Q™
combinations for candidates where the transverse flight re-
quirement of the 0~ is greater than 0.5 cm and 2.0 cm. (c)
The invariant mass distribution of J/¢¥ Q™ combinations for
candidates with at least one SVXII measurement on the 2~
track. All other selection requirements are as in Fig. [5(c).
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No Sideband Constraints?

Example: Counting experiment, only have a priori predictions of expected
signal and background

All test statistics are equivalent to the event count — they serve to order outcomes
as more signal-like and less signal-like. More events == more signal-like.

Classical example: Ray Davis’s Solar Neutrino Deficit observation. Comparing

data (neutrino interactions on a Chlorine detector at the Homestake mine) with a model
(John Bahcall’s Standard Solar Model). Calibrations of detection system were

exquisite. But it lacked a standard candle.

How to incorporate systematic uncertainties? Fewer options left.

Another example: Before you run the experiment, you have to estimate
the sensitivity. No sideband constraints yet (except from other experiments).

3/5/14 T.Junk CoDA HEP 30



“ABCD” Methods

CDF’s W Cross Section Measurement

” Iso4 vs Met
1.8 ;A . c CDF Run Il Preliminary

c Lo % fL ~72 pb'1
S 1.4F
§ 1.2 ; ) QCD Background _ B
gk e C A
= Py
2 0.8
© '=
§ 0.6 :
— 0.4} .

B o2 FAE RS Y < . y e

0 10 20 30 40 50 70 80 90 100

Want QCD contribution to
the “D” region where signal
is selected.

Assumes: MET and ISO are uncorrelated sample by sample
5/5/12918Nnal contribution to A,B, and C are small apd.subtractable

Isolation fraction=

Energy in a cone of
radius 0.4 around
lepton candidate
not including the
lepton candidate /
Energy of lepton
candidate

ABCD methods are
really just on-off
methods where

T is measured using
data samples



o “ABCD” Methods
vantages

* Purely data based, good if you don’t trust the simulation
* Model assumptions are injected by hand and not in

a complicated Monte Carlo program (mostly)
* Model assumptions are intuitive

Disadvantages

* The lack of correlation between MET and ISO assumption may be false.
e.g., semileptonic B decays produce unisolated leptons and MET from the
neutrinos.
* Even a two-component background can be correlated when the contributions aren’t
by themselves.
» Another way of saying that extrapolations are to be checked/assigned sufficient
uncertainty
* Works best when there are many events in regions A,B, and C. Otherwise all the
problems of low stats in the “Off” sample in the On/Off problem reappear here.
Large numbers of events = Gaussian approximation to uncertainty in background in D
* Requires subtraction of signal from data in regions A, B, and C = introduces
model dependence
* Worse, the signal subtraction from the sidebands depends on the signal rate
being measured/tested.
- A small effect if s/b in the sidebands is small
= You can iterate the measurement and it will converge quickly

3/5/14 T.Junk CoDA HEP
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The Sum of Uncorrelated 2D Distributions may be Correlated

&

Knowledge of one variable helps identify which sample the event came from
and thus helps predict the other variable’s value even if the individual samples

have no covariance.
3/5/14 T. Junk CoDA HEP 33



3/5/14

Multivariate Analyses

These are an important tool for optimizing sensitivity

* Reduce expected uncertainties on measurements
e Raise chances of discovering particles that are truly there
* Improve the ability to exclude particles that are truly absent

BUT:

* There are many ways to make a mistake with them: More work!
* Optimizing them
* Bestinput variables
* Best choice of MVA
* Validating them
* Validate modeling of inputs and outputs
e Check for overtraining
* Propagate systematic uncertainties through them

* Rates
* Shapes
e Bin-by-bin

T. Junk CoDA HEP
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Example MVA Methods

Coded up in TMVA — comes with recent versions of ROOT

* Feed-Forward Neural Networks (multi-layer perceptrons)
Abbreviations: NN, ANN, MLP

All are just functions

of the reconstructed

event observables.
 Boosted Decision Trees

We could devise our

own functions if

it suited our needs

and we were smart enough.
* Matrix Elements

These are machine derived,

so we call it machine learning.

See, for example, P. Bhat, Ann.Rev.Nucl.Part.Sci. 61 (2011) 281-309

3/5/14 T.Junk CoDA HEP 35



A Neural Network

Inputs to node i have
weights w,. Outputs
are sigmoid functions of
the weighted inputs.

0,=3 Ewijvj
1

S is any of these:

S(x) = Tan™}(x),
x/sqrt(1+x2?)
1/(1+exp(-x))
tanh(x)

Or any other s-shaped function

Main features: Nonlinearity,
3/5/14 .
monotonicity

Nodes

Hidden
Nodes

Input
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Training a Neural Network

The weights w;; are arbitrary. We may choose them, as well as the structure of the
network, to optimize our analysis.

We would like to classify events as signal (output = 1) or background (output = 0).

Ad-hoc figure of merit: Minimize the sum of squares of errors made by the
network:
2

E = E (Odesired - OObtained )

events

Why this function?

Well, it’s easy to differentiate with respect to the weights for each event.

Back-propagation training: Loop over training events (some signal, some background)
and adjust the weights each time according to how the adjustment will improve E.

Weighted events are okay with most MVA training programs. But it’s worth checking
to see how they respond to negative-weight events!

Adjustable parameters: “learning rate” —how big the steps in w; are scaled by the
derivative. How many events to use to train, how many spins through the training
3/5/§émp|e to use (”epochs”) T. Junk CoDA HEP
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Training a Neural Network

Critique of standard Neural Networks:

2

No one really cares about FE = 2 (Odesired — OObmined)

events

We care about the best expected uncertainty

on cross section or property measurements

Best expected limits if a particle is not there

Best expected chances of discovery if a particle is there

* Addition of non-useful variables (random noise) can hurt overall performance
* |nputs can have very broad ranges of behavior
discrete, large ranges, small ranges, mixtures ..

(can be mitigated by clever preprocessing)
* Advantages — can make use of correlations between input variables by forming
nearly arbitrary functions of them.

Experience with them shows that it is usually better to
e Give it the best variables already as inputs
* Pre-select the data into samples so the NN has less work to do
(fewer sources of backgrond that are imporantO



Overtraining

If a training sample is small, and the NN has many nodes and weights, it is possible
for the NN to “learn” the properties of individual events in the training sample
and get them classified correctly all the time.

This may not be representative of any other sample (like the data).

The network may not perform as well as it thinks it is performing if only the training
sample is used to judge.

Ensure that overtraining does not affect correctness:
Use different events to train a NN and to test it.

Even if it’s overtrained, then the independent evaluation of its performance is not
systematically biased by this effect.

The NN may not be fully optimal, however.

3/5/14 T.Junk CoDA HEP 39



Example of Giving NN’s Some Help — Cascading NN Stages

All Candida;

*\q" <05

tt expert network
output

>0.5

<0.5

If+charm expert
network output

>0.5

Further help:

Events

0.25

0.5

diboson expert network
output

0.75 |
Final Discriminant

<0.5
>0.5

Event selection is lljj, with m near M,.
One or two b-tags, with loose or tight
b-tagging requirements.

Split sample up into b-tag categories:

Tight-Tight
Tight-Loose
5'5}5}& Tight
Loose-Loose

Events/Bin

150

100 |

50

T. Junk CoDA HEP

CDF’s

ZH-2>1Ibb search

[ All-SubChannels

-

CDF Run Il Preliminary 9.45/fb

1 *+ data
T 7+If
] Z+bb
Z+cc
tt

] 77
1Hwz
1 ww

’ fake Z
1 [[] z1 a20)x 50

0.5
ZH (120 GeV) Discriminant
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(Boosted) Decision Trees

Original work by J. Friedman in the
1980’s

Look through the list of input variables;

= P Try sliding a cut along each one and find
the cut on a variable that maximizes
the purity difference on both sides of
the cut.

P F P “Gini index” — p(1-p), where p=purity
zero for perfect separation.

Iterate the search for the best cut on the
best variable for each subset of events
thus divided. Stop when you run out

of enough MC to predict the contents

of a sample.

* Advantages over NN’s: not as sensitive to the addition of “noise” variables —
they just never get cut on
* The Gini index is also just a proxy for what we really care about.



Matrix-Element Discriminants

e Calculate probability density of an event resulting
from a given process

Phase space factor:
Integrate over unknown

or poorly measured

quantities Parton distribution functions
7 _ 2 f(Q1)f(Q2)1
P(p; apjlapjz) — Idpjldpjzdpv Z¢4 | M(p;)| /Vjel( jet? part)
comb | ql || Q2 ‘
Inputs: Matrix element: Trar):fer fu?c;tlons:
lepton and jet 4-vectors - Different for each process. det ctcounff Oi ,
no other information Leading order, obtained from etector errects in
needed! MadGraph measurement of jet

energy

e The input variables are the same for all matrix
elements — adding a new matrix element requires

more calculation but does not use any different
information from the data



Matrix-Element Discriminants

In principle, nothing performs better than these.

If processes cannot be separated because they contribute to the final state in the same way,
this is all there is.

BUT:

* Four-vectors are imperfectly measured. Transfer functions are also imperfect.

* Only the modeling needs systematics; construction of the discriminant does not incur
additional systematics, so even if the discriminant is imperfect or naive, it’s okay —

just an optimization question.

* Matrix elements are usually leading-order only.

* Particles are sometimes not reconstructed at all, even when they should be

* Some processes do not have well defined matrix elements — like data-derived fakes.

* Non-kinematic information is important, too, such as b-tags (help reduce combinatorics)

* Not clear whether integrating over all possibilities or just picking the best one is the most

optimal for the purposes we set out for.
3/5/14 T. Junk CoDA HEP
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An Example Multi-Component Background with a Small Signal using Multiple MVA’s

10

Events/0.1

102

10

3/5/14

- s-channel single top quark, Tevatron RunIl, L <9.7 fo™

¢+ Data — Background sum

" s-channel signal Background uncertainty

™ . 1 [ JW/Z+X

t-channel
Multijets

e« = Higgs

BTEGICy ST

w
1
N
1
.y
(@)

Discriminant output [Iogm(s/b)]

Fitting background
shapes in situ
reduces
uncertainty.

Uncertainty on
shapes of all
templates is included.

Plot is a sum over
several selected
samples, and CDF+DO

Actual combined result uses separated analyses

T.Junk CoDA HEP
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The Classical Two-Hypothesis Likelihood Ratio

Distinguishing between u=0 (zero signal, SM, Null Hypothesis) and u>0 (the test hypothesis)

Assumption Warning! L(datah&’ 1/}) is the best-fit value
Signal rates scale with g, = 21n A of the signal rate

: u ~ ‘
=l Rl el L(data | M,V) U Can be zero. Your

. _ choice to allow it to
W is quadratically dependent on 80 negative.

coupling parameters (or worse.).

Larger q, is more signal-like

f(q,In)

med[q Iy’
9, w] d,>0 always because H,
/ % obs l f(a,lw) is a superset of H, and
/ therefore always fits
p-value at least as well.

~ is the best-fit set of nuisance
parameter values allowing p
to also float.

9 A
ATLAS performance projections, CERN-OPEN-2008-020 Vv the same, but with u fixed
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Events / 2 GeV

¥ weights / 2 GeV Events - Bkg

Y weights - Bkg

Observation of a New Particle: P-Value for the Null Hypothesis

= T T T T T = > L T | T T T T | T T T T | T T T
500> ATLAS ¢ Daa 3 &  cpam N ATLAS
000 ;_ ——— Sig+Bkg Fit (m =126.5 GeV) _; g 25 [ Background ZZ.  hezz5al
. Bkg (4th order polynomial) 3 € [ [ Background Z+jets, ft
500 E_ _E 520; [ ]Signal (m =125 GeV) E
000F- % = L % Syst.Unc.
500E" 527 Tev, [Lat=s.51b" 3 qp[1s=7TeV:|Ldt=4810" b
000 ;_ 1s=8 TeV, ILdt=59fb1 H ; L \'s = 8 Tev _[Ldt =58 fbf1
— —>YY = F
00 () R ]
= — ] — ] 1 ] I — L

5 = 100 150 200 G \2}50
5 4 Data S/B Weighted . m, [GeV]
100 — Sig+Bkg Fit (m ~126.5 GeV) ]
80 AN e Bkg (4th order polynomial) -
- E S L R L L B L R E
- 1 & F ATLAS 20i1-2012 E
60— < — 8 E is—7Tev: L= ¥ iy 5
- TN 1 8§ ts-7TeV:[ldi-4648M =y E
C ] z_ \s=8TeV: ILdt=58—59fb" +1o _§
40'_ — 1;: S - - Al :::::::::::::::::-:-:::::::::::::-::._; 0c
- . 101 30
C 102 Bl g
20— —] 10 o T 4 36
- c . O W S =
— ( ) I I I } ! 1 10° k- _é o
8E = 0%k =
4E E 0 -
SR YUY S S | o A, A A= 10,9 E N E
2 I R Y 1109102 _é 66
) 10 e i et e i
-8 . ) L . L 110 115 120 125 130 135 140 145 150
100 110 120 130 140 150 160 my [GeV]
m,, [GeV]

Combining
channels: Joint
likelihood L with
shared nuisance
parameters.

Popper: you can only
falsify models, never prove
one right.

p-value:
Po=P(dy 2 4,°>| no Higgs)
Criterion for discovery:

Py <2.77 x 10”7 corresponds
to 5 standard deviations

Bayesian Discovery Techniques (like the Bayes Factor) aren’t popular in HEP
(we like to know our error rates)

3/5/14
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Measuring an Interaction Rate

Frequently using the maximum posterior method, and taking a 68% credibility interval.

Where O are the
parameter(s) of interest
and v are nuisance parameters

L'(6)= f L(6,v)dv

L'(0)x(6)
f L'(0)7(0)do

Posterior Probability Density =

- s-channel single top quark, Tevatron Run II, L <9.7 fb
— Posterior probability density distribution

—
(]

—
(2}

III|I|I||II|III|I|I|III|III|III|III

Example —a recent measurement s 024 P

combining data from CDF and DO.
Some nuisance parameters are shared.

i 6SM = 1.05 £ 0.06 pb

—
N

Posterior probability density
— -h

Alternatively, some people just run 2'2

a maximum likelihood fit and '

quote uncertainties AlnL = 5. 04

This is not guaranteed to cover, 02 :

esp. L is multimodal or just not very 0502 04 06 08 1 12 14 16 18 2 22

. . Cross section [pb
Gaussian shaped (even as a function of [Pl

a nuisance parameter).
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Setting Limits on a Production Rate

Most hypothetical particles proposed by speculative theorists do not exist!
But we really should look for them because some of the might exist.

How do we express our results? Upper limits!

Tevatron Run Il Preliminary, L <10.0 b

Different approaches, usually

T = ' — ol ‘ ! ~ ATLAs:CMS
with similar results: ? .§ ..... Sf:::,’:: wio Higgs Tevatron  Exclusion
10 |2 ¢ ; mW :isdExpected  4ATLAS4CMS
S |& § 53 t2sdExpected
Bayesian o 3 83 - Exclusion
o Bl ‘ |
CL, O s i
Frequentist 5§48
> |g
1=
Coverage: Exclude a true signal

no more than 5% of the time at
95% CL.

5
2 ATLAS:CMS
el eqe 2 Exclusion R
Credibility | .- - Wk
Power 100 110 120 130 140 150 160 170 180 190 200

my, (GeV/c?)
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Blind Analyses

(Sub)conscious bias on the part of analyzers can distort results.
Even the decision to publish or not can constitute cherry-picking of results.

* Changing data selection requirements after looking at the data is very
difficult to justify

* |If a surprising result is obtained and it depends on a small number of events,
then we like to check it in a statistically independent sample

* Run the experiment some more, retain the original data selection requirements
and analysis tools and see if the result can be reproduced

e Check with the other collaboration(s) on the other side of the storage ring.



A Cautionary Tale — The Pentaquark “Discoveries”

_ gao- (a) g10 sample 1 535 - (b) g10 sample 2
St 2sf aok
L 200 25
30
L 10F *F
—~ L 10
N& 25 C 5 s
% . 1’; RN F R & A ¥ R 1’:] [T K & ¥ Ilhsnﬂ
<) 20 r ’ ’ ’ ’ " M. [Gevic'] ’ ’ ’ ' " M. [Gevic']
, L
— L
= L
S : z
@ 15 r 5307 (c) g10 sample 3 §30— (d) g10 sample 4
= L
q>) - 25:— 25k
M10
N 15F 15
5t
: ' i ' s5F sk
0 L - '-i L ""l L I I I Lillmn o I 1 1 ! n" r[lnn
1 5 1 6 Pa 15 18 1718 19 14 15 16 17 18 19
s . +) [ G V/ 2] M. [GeV/c'] M. [GeV/c']
MmK eV/c
an (e) g10 sample 5 530 o (f) g2a full
CLAS Collab., Phys.Rev.Lett. 91 (2003) 252001 o asf-
20k 20
N oo 15F 15}
Significance=5.2+0.6 ¢
s
PRl

Watch out for the
background function
parameterization!

3/5/14

M. [GeV/c'] ’ ’ ’ ' T M, [GeV/c*]

Five times the data sample
CLAS Collab., Phys.Rev.Lett. 100 (2008) 052001

n.b. the Bayesian analysis in this paper is flawed —
see the criticism by R:;Cousins, Phys.Rev.Lett. 101 (2008) 029101



Blind Analyses

But sometimes we would like to eliminate possible bias at the
outset!

* Hide the data in the signal region from the analyzers

* Allow analyzers to look at control samples (“sidebands”)
(“calibration samples”)

* Introduce hidden offsets to measured quantities so

analyzers do not know
what the measured answer is so they cannot make it more
(or less) like a prediction



Blind Analysis Procedures

Validate analysis as much as possible with simulation and control sample data
Collaboration sign-off on the analysis without looking at signal-region data
Data are “unblinded” (or hidden offsets revealed)

A hard-line approach: Collaboration must approve the unblinded result and submit for

publication, even if it contains mistakes that are obvious only when the signal region
data are investigated.

“Blind”, not “deaf and dumb”: Allow review of possible mistakes. But then we’re not
really blind, are we?

A practical concern: One analysis group’s calibration sample is another’s signal sample!
They can accidentally unblind each other!
Do we need to keep people out of each others’ meetings?
Collaboration by-laws usually prohibit denying access to data or to analysis meetings.
Usually a “good-faith effort”
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Look-Elsewhere

Multiple Independent Tests, each with a specified Type-1 Error Rate (false signal),
ought to produce Errors at the specified rate (or they aren’t powerful enough, or the
error rate can be claimed to be lower).

A single analysis can involve many multiple tests. Classic example: A bump-hunt on
a histogram.

Old-fashioned way to handle it (Bonferroni) — multiply p-value by the
number of independent searches:

Histogram width / resolution

This is an approximation to the right way to do it which is to compute the p-value of
p-values. What’s the chance of observing an excess as significant as the one | saw

anywhere in the histogram?
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An mternal CDF study that didn’t make 1t to prime time

— dimuon mass spectrum with signal fit

1800 [ T T

- QC -Run 1A + 1B
1600

+ Data - OS

T

1400
— Fit

---- Data - SS

1000

T

Events/(50 MeV)

800 -
600 -

400 T 8
L e J

) ST T T T T S T T T Y B

200-111I||||I|||.l||||l|..|l|.|
6.5 6.75 7 7.25 7.5

Mass (GeV)

249.7+60.9 events fit in bigger
signal peak (40? No!)

7.75 8 8.25 8.5 8.75 9

(not enough PE’s)

Significance Tests on the Dimuon Mass Bump

£ 10 F D 2
(%) E Entries 1000
S 60 F Mean 2310
3 so F RMS 84.59
g E
= 40 F
30
20 E
0
O:IIIIIIIr'III_I—LIlIIIIIIIIIIlIIII hhhln—i]llll
-400 -300 200 -100 0 100 200 300 400
Fitted events
7] (. o I [7:] =
g 70 :— ::'- ::a: g 70 = ::::. _:x
o ~ LIS DAl O LIS =o
S 60 S 60
& E &
= 50 = 30
= 2 =
= 40 = 40
0 F 30
20 E 20
10 F 10
O:IIIIIIIDIEEIIIIIIII O:IIIIIII hl:xl:nln:llllll
-400 300 -200 -100 0 0 100 200 300 400

Fitted events Fitted events

Null hypothesis pseudoexperiments
with largest peak fit values
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Where is “Elsewhere?”

A collider collaboration is typically very large; >1000 Ph.D. students. ATLAS+CMS is another
factor of two. (Four LEP collaborations, Two Tevatron collaborations).

Many ongoing analyses for new physics. The chance of seeing a fake bump somewhere is
large. What is the LEE?

Do we have to correct our previously published p-values for a larger LEE when we add
new analyses to our portfolio?

How about the physicist who goes to the library and hand-picks all the largest excesses?
What is LEE then?

“Consensus” at the Banff 2010 Statistics Workshop: LEE should correct only for those
models that are tested within a single published analysis. Usually one paper covers one
analysis, but review papers summarizing many analyses do not have to put in additional
correction factors.

Caveat lector.



Running averages Look ElseWHEN

correct answer, but the )

deviations in units of the ©

expected uncertainty have 5 g

a random walk in the b R

logarithm of the number of - 1

trials n 05 |- E

Sam | g

d — k=1 05 |- -

n , ]

1// N A b :

The r, are 1ID numbers drawn 15 | g

from a unit Gaussian. o i v o el i e e v
1 10 10> 10> 10* 10 10® 10" 10®  10°

Trial Number

It’s possible to cherry-pick a dataset with a
maximum deviation. “Sampling to a foregone conclusion”

Stopping Rule: In HEP, we (almost always!) take data until our money is gone. We produce results for the major conferences
along the way. Some will coincidentally stop when the fluctuations are biggest. We take the most recent/largest data sample
result and ignore

(or should!) results performed on smaller data sets. p-values still distributed uniformly from 0 to 1. A recipe for generating

“effects that go away”
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An Example of Running Three Analyses on the Same Events
in Monte Carlo Repetitions

LF-ME 58.9%

ME-NN 60.8%

| h_corrME_LF (0.589) | h_corrME_LF

Entries 20000

w 3 Mean x 1.008

= o Meany 1.005

2s5b RMSx 03184

“E RMSy 0.2433
2k
1.5F
1=
0.5F
oF
-0.5F

AN NEERE FE RN ERE NI FNENE N RN FNRE | P

| h_corrME_NN (0.608) |

LF-NN 74.1%

h_corrME_NN

Entries 20000

w 3_ Meanx 1.005

= - Meany 1.005

- RMSx 02731

2.5F *

- RMSy 02433
2
1.5F
1=
0.5F
o
0.5

[ h_corrNN_LF (0.741) | h_corrNN_LF

3

2.5

2F

1.5

1

0.5

0

-0.5

Entries 20000

Mean x 1.006
Meany 1.005
RMS x 0.3184
RMSy 0.2731

Different questions can be asked: What's the distribution of the maximum difference
between the measurements any two teams? What’s the quadrature sum of the
pairwise differences? Condition on the sum? (Probably not..)
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Several Analyses on the Same Data

* Different groups are interested in the same search/measurement using the same
data.

* May have slightly different selection requirements (Jet energies, lepton types,
missing Et, etc).

* Usually have different choices of MVA or even training strategies for the same MVA
» Always will give different results!

 What to do?

* Pick one and publish it — criterion: best sensitivity. Median expected limit,

median expected discovery sensitivity, median expected measurement uncertainty.
How to pick it if the result is 2D? Need a 1D figure of merit.

* Can check consistency with pseudoexperiments. A p-value using A(measurement)
as a test statistic. What’s the chance of running two analyses on the same data
and getting a result as discrepant as what we got?

* Combine MVA’s into a super-MVA

* Keeps everyone happy and involved
* Usually helps sensitivity
* Requires coordination and alignment of each event in data and MC
* Easiest when overlap in data samples is 100%. Otherwise have to break
sample up into shared and non-shared subsets and analyze them separately
* What not to do: Pick the one with the “best” observed result. (LEE!)



States With A Bottom and an Anti-Bottom Quark: the Upsilon System

—
™~

o
S 45000
&
— 40000

o

= 35000

oA
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& 25000
20000
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ﬁ" CMS Preliminary, \'s =7 TeV
L, . =40 pb"’

m"| < 2.4

t 4 c =100 MeV/c?
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pp- mass (GeV/c?)
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The ‘ Detector

End-Plug Electromagnetic Central Muon Central Muon Upgrade (CMP)
Calorimeter (PEM) Chambers (CMU)

Lepton coverage:
In| < 1.5 (muons)
Central Muon Extension (CMX) IT' I <2.0 (EIECtrOnS)

End-Wall Hadronic
Calorimeter (WHA)

End-Plug Hadronic

Calorimeter (PHA . .
alorimeter (PRA) b-tagging with
Cherenkov Luminosit
R  Inl<~14
= «— Protons
\ \
Tevatron Nt ‘
Beampipe N w Jets to
- = B In| <2.8
| ne ni < e
2= Higgs analyses
Anti-__, ] \ Barrel Muon .
protons Chambers (BMU) restrict to
In| <2.0

Central Outer Tracker (COT)
Dijet mass

Solenoid
Central Electromagnetic Interaction Region resolution: ~16%
Calorimeter (CEM) Layer 00
Central Hadronic Silicon Vertex Detector (SVX 1)
Calorimeter (CHA) Intermediate Silicon Layers (ISL)
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The Detector

A Lepton coverage: Scintillating

In| <2 (muons) fiber tracker
In| < 2.6 (electrons)

Trigger similar

b-tagging with to CDF’s
‘ Calorimeter | / Inl < ~2
_
Toroid A
Jets to

Inl <3

[UN N RN (NN TN URN N TN (RN S SN N NN TN SN NN SN N S S N

f A ﬂ- - ::W : q."’\a\f/:f
. A "/N:

r/ \‘
/W
IR
: !
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1 USED 70 THINK

CORRELATION Ir’IPUI
CAUSATION.

1

THEN I TOK A

STATISTICS CLASS.

Now I DON'T.

f |

SOUNDS LIKE THE
CLASS HELPED.

WELL, MAYBE

§
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A good sample of purified

signal is important if you don’t

have many events.

3/5/14
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Combining the Work of Two Teams Analyzing the Same
Set of Events

How do we get the most out of our work?
Typical NN error function is not something we care about:
E = E(meas—desired)2

events

But it is easy to back-propagate for efficient training
Instead we want
e Discovery
e failing that, exclusion
This figure of merit works better:
F = Esz /b
bins

But how do you train to optimize that?



Neuro-Evolution to the Rescue!

Kenneth O. Stanley and Risto Miikkulainen (2002).
"Evolving Neural Networks Through Augmenting Topologies".
Evolutionary Computation 10 (2): 99-127;

http://en.wikipedia.org/wiki/NeuroEvolution_of Augmented_Topologies

e Figure of merit difficult to calculate
e Test one configuration, set of weights against others,
pick features from the best performers
e Handles to optimize:
e Network topology
e Network weights
e Qutput binning
e Inputs MEBDT, NN outputs for each event.

e Sensitivity improvement -- 9% in expected limit
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Matrix Element Basics

Predictions given by QM matrix element and phase space.

Many processes (signal and background) give the
same observable quantities in the detector -- cannot assign
an event to be signal or background (if we could, we would!)

Instead, ask what the ratio of chances of getting an event
from signal or background processes. Need to incorporate
experimental resolution effects.



Imperfect Reconstruction

e Missing neutrinos! Missing E; resolution not perfect.

e Jet energies not perfectly measured. Directions are
pretty good, and leptons are measured well.

e What parton 4-vectors could have given us the measured events?

PDFs transfer
ME function
1 T (y1) f(y2
P(z) = ;/QW‘*;MP IJEJ |) “2 |)W(y,a:)d<1>4qu1qu2
g1 g2

y=parton (or neutrino momenta), x=measured jet
guantities.

Do this for each physics process -- form a likelihood ratio from them



Expected Limit/SM

Sensitivity Improves Over Time

CDF Run II Prellmmary, mH_115 GeV CDF Run II Prellmmary, mH_160 GeV
T T T T T ] ‘ = ‘
"""""""""" { — Summer 2005 ' December 2008 0 — Summer2004 —— March 2009
"""""""""" 1 Summer 2006 —— November 2009 T 'E Summer 2005 —— November 2009
., =™ Summer2007 —— July2010 . = —— Summer 2007 —— July 2010
: -l
{ ——  January 2008 —— July 2011 - —— January 2008 —— July 2011
3 Projected Improvements 9 —— December 2008 Prolected Improvements B
(1]
Q.
>
w

- SM=1

— — — 0 2 4 6 8 10 12 14
0 2 4 6 8 10 12 J14 inosi -1
Integrated Luminosity (fb ) Integrated Luminosity (fb ')

Naive Expectation: Expected rate limit scales as 1/sqrt(L,.,,). Assumes b>>1 event.

Exceptions to the rule:

* b<1: Expected limit scales as 1/L,. As L., grows, b grows, and the dependence departs

from 1/L, . anyway. Not an issue for our searches (trilepton ones have low bg though)

» Systematics could hit a “brick wall”. Background and signal efficiency systematics are
constrained by data, so we expect these to scale as 1/sqrt(L, ).

* Analyses improve! New taggers, more acceptance, trigger improvements, smarter MVA's.
* Theorists give us new cross sections and b.r.’s (we scale these out so it’s apples to
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Why 5 Sigma for Discovery?
From what | hear: It was proposed in the 1970’s when the technology
of the day was bubble chambers.

Meant to account for the Look Elsewhere Effect. A physicist estimated how many
histograms would be looked at, and wanted to keep the error rate low.

Also too many 20 and 30 effects “go away” when more data are collected.

Some historical recollections:
http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance_b_1649808.html

Not all estimations of systematic uncertainties are perfect, and extrapolations
from typical 1o variations performed by analyzers out to 50 leave room for doubt.

Some effects go away when additional uncertainties are considered. Example —
CDF Run | High-E; jets. Not quark compositeness, but the effect could be folded
into the PDFs.

If a signal is truly present, and data keep coming in, the expected
significance quickly grows (s/sqrt(b) grows as sqrt(integerated luminosity)).



A Useful Tip about Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, then the limit will
be 3 signal events.

0_
re’

-r

=e

pPoiss(n = 0,7') =

If p=0.05, then r=-In(0.05)=2.99573

You can discover with just one event and very low background, however!
Example: The Q  discovery with a single bubble-chamber picture.

Cut and count analysis optimization usually cannot be done simultaneously
for limits and discovery.

But MVA’s take advantage of all categories of s/b and remain optimal in both cases;
but you have to use the entire MVA distribution
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B-Tagging

2 CDF Run Il Preliminary
LOO single-sided silicon + Impact sl o
5-layer double-sided silicon+ parameter 550 Gov
2-layer ISL resolution ks
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for high-pt [0 . £,
tracks ~18um >
ol
B-tagging relies on
displaced vertex 03¢
reconstruction: a4, .
high mass, long lifetime 108
X (cm)
S:(;Vtx Tag Efficiency for Top b-Jets Mista gr ates
TP T il Example
0.6} =L°°Se SecVix | )il?’/ for?l candidate
Tight Secvix ] ~l/o
: 1. : event (lvbb
0.5 i light-flavor jets (Ivbb)
0.4F ]
0.3 ]
0.2f ; : .
: 1 D@ B-tagging per-jet
0.1F 1  efficiency = 50-70% (of taggable
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Jet Eta
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jets) for 1-5% Mistag rate



A “Positive” Tag

@
Primary
Vertex

A “Negative” Tag

Track
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Primary

B-Tagging Calibration

Fake tags calibrated
with data — resolution
dominated negative tags.

Tracks

Watch out for asymmetry:
scatters in detector material
and long-lived strange
particles cause more
positive mistags than
negative ones

:""]""I""""'] """" IR :
asof- * Data =
s00l-  [] Bottom E
ssof-  []Charm E
a0l [JLight 3
250 E

Vertex 2o =

150 =

100} =

ST | R
QT2 4 0 1 2 3 4

5

Signed Tag Mass

Positive b-tags
Calibrated in data
with a sample of
dijets —

“away” jet is
b-tagged, “probe”
jet has a

high-P; ., electron.
Tag rates compared
in data and MC

<
o
S
O
N
o2

“probe”
® Primary JEt

= % Vertex

“away” jet
(vertex-taggd)
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Probability density

CL, Limits -- extension of the p-value argument

(a)

t —— Observed

LEP
m, =115 Gev/c®

----- Expected for background

---- Expected for sign

plus background

al

e Advantages:
e Exclusion and Discovery p-values are consistent.
Example -- a 20 upward fluctuation of the data
with respect to the background prediciton appears
both in the limit and the p-value as such
e Does not exclude where there is no sensitivity
(big enough search region with small enough resolution

and you get a 5% dusting of random exclusions with
CLs+b)
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(apologies for the notation)

p-values:
CL, = P(-2InQ = -2InQ,

obs

CL,=CL,,,/CL, 2 CL,,
Exclude at 95% CL if CL,<0.05

Scale r until CL.=0.05 to get r,

T. Junk CoDA HEP

| b only)
Green area = CL,, = P(-2InQ = -2InQ,
Yellow area = “1-CL,” = P(-2InQ=-2InQ

| s+b)
|b only)

obs

obs

&« This step

m

can take
significant
CPU
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A Useful Tip about Limits

It takes almost exactly 3 expected signal events to exclude a model.

If you have zero events observed, zero expected background, then the limit will
be 3 signal events.

0_
re’

-r

=e

pPoiss(n = 0,7') =

If p=0.05, then r=-In(0.05)=2.99573

You can discover with just one event and very low background, however!
Example: The Q  discovery with a single bubble-chamber picture.

Cut and count analysis optimization usually cannot be done simultaneously
for limits and discovery.

But MVA’s take advantage of all categories of s/b and remain optimal in both cases;
but you have to use the entire MVA distribution
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Rule of Three

From Wikipedia, the free encyclopedia

Rule of three may refer to:

* Rule of three (aviation), a rule of descent in aviation

« Rule of three (C++ programming), a rule of thumb about class method definitions

* Rule of three (computer programming), a rule of thumb about code refactoring

+ Rule of three (economics), a rule of thumb about major competitors in a free market

+ Rule of three (mathematics), a computation method in mathematics

« {Rule of three (medicine); for calculating a confidence limit when no events have been observed %
+ Rule of Three (Wicca), a tenet of Wicca

« Rule of three (writing), a principle of writing

e Rule of Three, a series of one-act plays by Agatha Christie

See also

« Rule of thirds, a compositional rule of thumb in photography
« Rule of thirds (diving), a rule of thumb for scuba divers
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The “Neyman Construction” of Frequentist Confidence Intervals

Essentially a : :
“calibration curve” i =D(o)=

e Pick an observable x
somehow related to the
parameter Oyou’d like
to measure

e Figure out what
distribution of observed
x would be for each value
of @ possible.

e Draw bands containing -
68% (or 95% or whatever) P0851ble experimental values x
of the outcomes

e Invert the relationship using A pathology: can get an

the prescription on this page empty interval. But the error
' rate has to be the specified one.
Imagine publishing that all branching ratios
Proper Coverage is Guaranteed! between 0 and 1 are excluded at 95% CL.
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Some Properties of Frequentist Confidence Intervals

e Really just one: coverage. If the experiment is repeated many times,
the intervals obtained will include the true value at the specified rate

(say, 68% or 95%).
Conversely, the rest of them (1-a) of them, must not contain the true value.

e But the interval obtained on a particular experiment may obviously be in
the unlucky fraction. Intervals may lack credibility but still cover.

Example: 68% of the intervals are from - to +, and 32% of them are empty.
Coverage is good, but power is terrible.

FC solves some of these problems, but not all.
Can get a 68% CL interval that spans the entire domain of 6.
Imagine publishing that a branching ratio is between 0 and 1 at 68% CL.

Still possible to exclude models to which there is no sensitivity.

FC assumes model parameter space is complete -- one of the models in there
is the truth. If you find it, you can rule out others even if we cannot test them
directly.



A Special Case of Frequentist Confidence Intervals: Feldman-Cousins

Each horizontal band contains 68% of
the expected outcomes (for 68% CL
intervals)

But Neyman doesn’t prescribe which 68%
of the outcomes you need to take!

Take lowest x values: get lower limits.
Take highest x values: get upper limits.

Cousins and Feldman: Sort outcomes by
the likelihood ratio.

R =L(x]|0)/L(x]| By
R=1 for all x for some 6.

Picks 1-sided or 2-sided intervals --
no flip-flopping between limits and 2-sided
intervals.

3/5/14 T.Junk CoDA HEP

parameter 6

Xl(leo) Xzfeo)

Possible experimental values x

G. Feldman and R. Cousins,

“A Unified approach to the
classical statistical

analysis of small signals”
Phys.Rev.D57:3873-3889,1998.
arXiv:physics/9711021

No empty intervals!
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