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Two (or more) Parameters of Interest
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Figure 33.5: Standard error ellipse for the estimators 52 and 9} In this case the

correlation is negative.

Table 33.2: Ax? or 2AIn L corresponding to a coverage probability 1 — « in the
large data sample limit, for joint estimation of m parameters.

From the 2011
PDG Statistics
Review

(1-a) (%) m=1 m=2 m=3

S 68.27 1.00 2.30 3.53
90. 2.71 4.61 6.25

95. 3.84 5.99 7.82

95.45 4.00 6.18 8.03

99. 6.63 9.21 11.34

99.73 9.00 11.83 14.16

http://pdg.lbl.gov/2011/reviews/rpp2011-rev-statistics.pdf
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1D or 2D Presentation

CDF Il Preliminary 3.2 fb™
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Parameter 1

| prefer when showing a 2D plot, showing the
contours which cover in 2D. The

2AInL=1 contour only covers for the

1D parameters, one at a time.
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Hypothesis Testing with Two Parameters of Interest?

See for example, DO’s evidence for t-channel single top production:

Phys.Lett. B 705 (2011) 313-319

“... using the log-likelihood approach

... we compute for the first time the significance
of the tgb cross section independently of any
assumption on the production rate of tb.”

In this specific case the correlation is small, and this
claim isn’t so bad. But to calculate a p-value
p(A=A .. | signal=0), one needs a sample space of
pseudoexperiments, and thus an assumption of
the s-channel rate.
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Hypothesis Testing with Two Parameters of Interest?

Another issue: A variation on the LEE theme.

s-channel and t-channel single top events are
differ in their kinematic distributions

we’d train

For observation and measurement of the total single top production rate o
our MVA’s on the Standard Model mixture of both.

S+t

For separate measurement of o, and o,, we have choices of training strategies.
Single-tag events — t-channel; Double-tag events — s-channel.

Suppose we want to do a hypothesis test on just the t-channel? Re-optimize all MVA’s
with t-channel as the signal and s-channel as background. Re-do this for s-channel.

ldeally we’d pick the most sensitive MVA (highest expected significance) for the test
we want to do, but there is a temptation to pick the one with the highest
measured significance (we tell analyzers to pick the most sensitive).

If you have an excess of data events that could be s- or t-channel (can’t tell), this strategy
may end up giving an observation of both (or neither), when we’re really only sure there’s
at least one process present.



Several Analyses on the Same Data

* Different groups are interested in the same search/measurement using the same
data.

* May have slightly different selection requirements (Jet energies, lepton types,
missing Et, etc).

e Usually have different choices of MVA or even training strategies for the same MVA
* Always will give different results!

 What to do?
* Pick one and publish it — criterion: best sensitivity. Median expected limit,
median expected p-value, median expected measurement uncertainty.
How to pick it if the result is 2D? Need a 1D figure of merit.

e Can check consistency with pseudoexperiments. A p-value using A(measurement)
as a test statistic. What’s the chance of running two analyses on the same data
and getting a result as discrepant as what we got?

* Combine MVA’s into a super-MVA

* Keeps everyone happy and involved
e Usually helps sensitivity
* Requires coordination and alignment of each event in data and MC
e Easiest when overlap in data samples is 100%. Otherwise have to break
sample up into shared and non-shared subsets and analyze them separately
 What not to do: Pick the one with the “best” observed result. (LEE!)



An Example of Running Three Analyses on the Same
Events

in Monte Carlo Repetitions
LF-ME 58.9% ME-NN 60.8% LF-NN 74.1%

| h_corrME_LF (0.589) | h_corrME_LF [ h_corrME_NN (0.608) | h_corrME_NN [ h_corrNN_LF (0.741) | h_corrNN_LF
Entries 20000 Entries 20000 Entries 20000
w 3_ Meanx  1.006 w 3_ Meanx 1.005 = 3_ Meanx  1.006
= t Meany  1.005 = r Meany 1.005 = Meany 1.005
25'_ RMSx 0.3184 25"_ RMSx 0.2731 25_'_ RMS x 0.3184
“F RMSy 0.2433 ) - RMSy 0.2433 ) : RMSy 0.2731
2f , 2f , 2f
1.5:— 1.5F 1.5:-
i 1E i
0.5F 0.5F 0.5
oF oF o
-0.5F 0.5 -0.5F
EERINEERE RSN SRR CN NN NN RN RN NN | TR EE AR AR RN RN SRR RN SR RNE RN TR RN E RN AR RN SRR SN RN RN N F RN
1 05 0 05 1 15 2 25 3 1 05 0 05 1 15 2 25 3 1 05 0 05 1 15 2 25 3
LF NN LF

Different questions can be asked: What'’s the distribution of the maximum difference
between the measurements any two teams? What’s the quadrature sum of the
pairwise differences? Condition on the sum? (Probably not..)



Systematic Uncertainty Handling

For a very thorough review, see Luc Demortier’s note:
“P Values: What They Are and How to Use Them “

http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf
Plausible options:

1) Prior-Predictive method

2) Supremum method

3) Confidence-Level method

4) Plug-In p-values

5) Define all nuisance parameters to be parameters of interest

6) Define only the important nuisance parameters to be parameters of interest

The prior-predictive method is a mixture of Bayesian and Frequentist reasoning
The supremum method is very conservative and | argue not fully non-Bayesian.

It also produces mixed results — can have an outcome which is an excess over
background when setting limits and a deficit when computing a p-value.



Treat Nuisance Parameters As Parameters of Interest!

* One person’s nuisance parameter is another’s CDF Run Il Preliminary (5.8 fb™)
: —, 1.5
parameter of interest. bg - -Ln(L/L__) Contours, 1+ 22-tag events
o
* Really only good if you have one dominant 2

source of systematic uncertainty, and you
want to show your joint measurement ]
of the nuisance parameter and the ol
parameter of interest. :

0.5 ¢ Fitted Values

[ — -La(LL__)=45
A — -La(LL__)=20
: — -Ln(L/L__)=0.5
Difficult to apply to cases with many _1511,,ljli"’l”l,wImlmlmlml
nuisance parameters. 166 168 170 172 174 176 178 180

M,,, [GeV/c?]

Example: top quark mass (parameter of interest), vs.
CDF’s jet energy scale in all-hadronic ttbar
events. Doesn’t follow my suggestion! But one
parameter (JES) is not a parameter of “interest”
If it were, we’d use ALnL=1.15 instead of 0.5



“Strong” Sideband Constraints

Candidates/ 5 MeV/c?

CDF Il 220 pb™
6000 53001 n
2200 {1
|
5000 | 2100 | ;{
'¢‘ 2000 . .:.J \\f‘:. * )|
¢ |4 . "‘**" g
e T 1900+ % 4 TN
| 1800 L 1
30001 | 380 385 390 3.95
| \
2000 .l T‘o o~ onee’oe® o"“. ‘“‘...“, ,5.‘.'5.“;.%“031‘“.!
10001 X(3872)
0

3.65 3.70 3.75 3.80 3.85 3.9023.95 4.00
Jiyn'n Mass (GeV/c™)

Guess a shape that fits the backgrounds, and fit it with a signal.
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Another Strong Sideband Constraint Example
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“Weak” Sideband Constraints

N ©)
2 r
LA :I.VJ]‘ . .ﬂ” N0, .l_.\.ﬂ.H A H]ﬂﬂﬂ‘ﬂ
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FIG. 8: (a,b) The invariant mass distribution of J/v% Q™
combinations for candidates where the transverse flight re-
quirement of the 2~ is greater than 0.5 cm and 2.0 cm. (c)
The invariant mass distribution of J/v 2~ combinations for
candidates with at least one SVXII measurement on the 2™
track. All other selection requirements are as in Fig.[5(c).
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A Mixture of Theory and Data is Needed for a more Complicated situation

Main Backgrounds:
H->ZZ->Four Leptons ;
pp 2 ZZ (MC)*theory

pp > Z+jets, ZW+jet(s), ... Data
pp =2 ttbar

|
ATLAS Preliminary

e DATA
@ Background
[ Signal (m =150 GeV)
[ Signal (m =190 GeV)
-Ia @ Signal (m =360 GeV)

—_t
\S]

—
o

IIIIIII|I|IIIII|IIIII[III]I

Low-mass 4L side: off-shell Z’s,

“radiative tail”, and other backgrounds

Events/10 GeV

H%ZZ —>4I
[Ldt = 4.8 fb”
\s=7TeV

Dependent on theoretical predictions
of the shape of the dominant ZZ
background.

With more data, replace “bad” systematiccs
with “good” ones (theory replaced
200 400 . [6(93\/] with data). But in the early stages, the

: “bad” systematic uncertainties are smaller!

| | 11 1 | 11 | | | | 11 | | 11 1 | 11 1




Another Weak Sideband Constraint Example that Looks Like a Strong Sideband Constraint

Signal Templates

 0.35 . Best Fit (backgrounds only)
S 0s B m,=90GeV/c? " 2250 : bbB
8 = 2 > 2000 bBb
@ M m,=160 GeV/cZ 8 B bbX
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-
© ]
® 0.15 51000
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0.1 750 3
500 s
0.05 250 3
0 1 L 1 1 I 1 L 1 1 ) n
50 100 150 200 250 300 350 50 100 150 200 250 300 350
. . 2
dijetmass m,, (GeV/c?) dijet mass m,, (GeV/c")
Background Templates
N: 0.225 3
= 3 W bbB
3 0.2 - W bBb Best Fit (with signal template)
O 0175 F © 2250 W bbB
19} 3 9
T 015 = bbx 2 2000 = bBb
= : e [ B bbX
S 0125 F B bao 0 M bChb
B oqk <1500 M bQb
o aF I
- C ""1250 - mH=150
— C c
0.075 [ o ® CDF 2.6/ib
3 3 1000
0.05
E 750 3
0.025 3 - T
0 i | L 1 1 I 1 L 1 1 I 1 L 1 1 l 1 1 3
250
50 100 150 200 250 300 350
. 2 0
dijet mass m,, (GeV/c®) 50 100 150 200 250 300 350
dijet mass m,, (GeV/c?)
12
Phys.Rev. D85 (2012) 032005

e-Print: arXiv:1106.4782 [hep-ex]
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Breaking the Flavor Degeneracy with a Tag Variable

& 025 i Best Fit (with signal template)
§> . light <& [ M bbB
8 X charm %3500 B I bBb
0.2 - "
o - bottom O 3000 B bbX
o C - L I bCb
= - % 2500 |- M bab
s 015 2
c U T -
=] C 52000 [ B m,=150
= - > _ ® CDF 2.6/fb
S 01 1500
— K 5
- 1000 |-
0.05 - —
- 500
[ 1L l L 1 1 l L Ll I Ll Ll A1 0
0 0 1 2 3 4 5 6 7 8 9
0 03 1 13 2 23 3 33 4 flavor separator x,, .. (GeV/c?)
m,,, (GeV/c?) P tags
9
0 9
Xiags Best Fit (backgrounds only)
Background Templates No ~ Il bbB
< 0.45 %3500 - I bBb
Q E bbB [
S o4f = O 3000 W bbX
G 035F I bBb - ! I bCb
T os3f W bbX 2500 - = bab
> 03f c - ® CDF 2.6/fb
S ozsf M boh 2000 -
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8 02f 1500 ~
- C -
0.15 E_ 1000
01 F —
- 500
0.05 -_ ———
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0 1 o 3 n 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
fl 2 flavor separator x,, . (GeV/c?)
avor separator x,,,, (GeV/c’) tags
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No Sideband Constraints?

Example: Counting experiment, only have a priori predictions of expected
signal and background

All test statistics are equivalent to the event count — they serve to order outcomes
as more signal-like and less signal-like. More events == more signal-like.

Classical example: Ray Davis’s Solar Neutrino Deficit observation. Comparing

data (neutrino interactions on a Chlorine detector at the Homestake mine) with a model
(John Bahcall’s Standard Solar Model). Calibrations of detection system were

exquisite. But it lacked a standard candle.

How to incorporate systematic uncertainties? Fewer options left.

Another example: Before you run the experiment, you have to estimate
the sensitivity. No sideband constraints yet (except from other experiments).

Prior predictive method then is equivalent to the profile method using the control
samples to estimate nuisance parameters. And it’s more general in cases that the
signal contamination of the sidebands is important.
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More than one “off” sample

Conflicting estimates of background — what to do?

Very typical example: Pythia vs. Herwig (here the “off” samples are Monte Carlo).
“Take the difference as a systematic”

“Take the average and half the difference as a systematic”

Try to learn something about which one is more reliable.

But you can invert more than one cut and have “conflicting” off samples in the
data too. Really the extrapolation factors or the sample composition estimates
are what’s wrong, not the actual data.



A Pitfall -- Not Enough MC (data) To Make

Adequate Predictions
An Extreme Example (names removed)
35
3
2.5; -
15, M

% 01 02 03 04 05 06 0.7 0.8 09 1

Questions: What’s the shape we are trying to estimate?
What is the uncertainty on that shape?

Cousins, Tucker and
Linnemann tell us prior
predictive p-values
undercover with 00
events are predicted

in a control sample.

CTL Propose a flat prior in

true rate, use joint LF
in control and signal

samples. Problem is, the

mean expected event rate
in the control sample is
n.p+1 in control sample.
Fine binning — bias in
background prediction.

Overcovers for discovery,
undercovers for limits?

Lesson learned: Try to do a better job with the predictions!

Statistical methods won’t save us.

See Glen
Cowan’s
talk
yesterday



MC Statistics and “Broken” Bins

Overbinning is like
overtraining a NN.
s, b, and d can all
be in different bins.
A histogram can be
partially overbinned, like 1
this one here:

—o—Data {Ldf=201b"

[JFakey, Real+fake b
Bl Real y, Fake b

e NDOF=?

10 Z > Background Uncertainty

Events per 15 GeV

50 100 150 200 250 350 400
E.(y) [GeV]

e Limit calculators/discovery tools cannot tell if the background expectation
is really zero or just a downward MC fluctuation.
e Real background estimations are sums of predictions with
very different weights in each MC event (or data event)
e Rebinning or just collecting the last few bins together often helps.
e Problem compounded by requiring shape uncertainties to be evaluated!
Alternate shape MC samples are often even more thinly populated than the

nominal samples. Validation of adequate preparation of results is necessary?
(but what are the criteria?)
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Some Very Early Plots from ATLAS

Suffer from limited sample sizes in control samples and Monte Carlo
Nearly all experiments are guilty of this, especially in the early days!

(’\_l I T T I L T I T T I T T TDY tY T20T1 1T (7 T Y7TTY VT) T :
> N -1 . ata \s=7TeV) A
8 10° IL dt~1.34fb Total SM Prediction E
cu\") ATLAS 1 QCDHf? qq (Template) 7
ol o* e, [ Alpgen tt— gl -
—~— e I Alpgen W— (ey,1)v
2 0. B Alpgen Z— vv
- -
§1°3 . TF=B/A L. SUSY Point (1220,180)
w . . .
1 $'_._> Multi-Jet Control Region
0 "ty 5 jets p, > 80 GeV
.’} e \'\nl' . i'.
1 : SRLE | )
: Ef% I 3
10 . = i

10 14 1:6
ET ”/\ H, (GeV'?)

'-. 1y ? LI l LI l LR LI I LU l L I =
o F ATLAS Preliminary 3
8 [ Ne-TTeV EWaes Qo
< 10 1 ERww I Zy+jets

L IIlIIlI
1 llllllll

T Illllll

L1 lllllll

10"

L L

102

00 05 1.0 15 20 25 30
Ag, [rad]

Data points’ error bars are not sqrt(n). What
are they? | don’t know. How about the uncertainty
on the prediction?

The left plot has adequate binning in the “uninteresting” region. Falls apart on the right-hand
side, where the signal is expected.
Suggestions: More MC, Wider bins, transformation of the variable (e.g., take the logarithm).
Not sure what to do with the right-hand plot except get more modeling events.

6/5/12
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This Histogram is Probably Okay

3500 . —

The binning is a little odd, - ||
though. You can get this 3000 D ackqround
kind of distribution from - -
a decision tree or a 2500 ﬂ ! o DATA
likelihood MVA. : el 1 Iet
(forest of delta functions) 2000 H )

B »
Watch out though! 1500 ['¢ i
Smoothing and some kinds - ﬂ"u *
of interpolations (E.G. 1000 JU qﬂ.
horizontal morphing - 1
a la Alex Read) are 500 . Yo
inappropriate for this distribution. N | | | | | |

L1 1 I I v i "' | |

0.7 0.8 0.9 1
MVA mark

% 0.1 02 0.3 0.4 0.5 0.6

Sometimes distributions like these have natural causes: Lepton ¢ distributions
for detectors with many cracks, for example.



A More Common Example — muon coverage
at high angles.

CMX CDF Run Il Preliminary, L=3.2 fb™!

- 180 F : 1%0r |
e * Data B wbb W+LF N
N 460 E M s-channel M ttbar NonW = L u triggers
% - [ t-channel Wc+Wecc M Z+jets,Diboson g i CMUP
T 140 2 90} CMX
o I t g I
120 1] : <. "1 o - EMC
:0 | .__. . o * o" CE . 0O —_ -
100 | /47 I I i T > r CMU
b | CET T el mn c 3 o
80l . oti o+ o rl o - T CMP
o N L : = I
[ . 1 B BMU
60 - 1 ° . " i
- 1 * 4 B —CMI
: ¢ 7 . '90_ C O
40 __ ® : . —vo;’ : —SCMIO
20 ' . I — CMXNT
PN S -180L - B
3 2 4 0 1 2 3 ] S

(Dlepton

No smoothing/extrapoation allowed here!



Optimizing Histogram Binning
Two competing effects:
1) Separation of events into classes with different s/b improves the sensitivity
of a search or a measurement. Adding events in categories with low s/b to events
in categories with higher s/b dilutes information and reduces sensitivity.

—> Pushes towards more bins

2) Insufficient Monte Carlo can cause some bins to be empty, or nearly so.
This only has to be true for one high-weight contribution.

Need reliable predictions of signals and backgrounds in each bin
- Pushes towards fewer bins

Note: It doesn’t matter that there are bins with zero data events — there’s always
a Poisson probability for observing zero.

The problem is inadequate prediction. Zero background expectation and nonzero
signal expectation is a discovery!



Overbinning = Overlearning

A Common pitfall = Choosing selection criteria after seeing the data.
“Drawing small boxes around individual data events”

The same thing can happen with Monte Carlo Predictions —

Limiting case — each event in signal and background MC gets its own bin.
- Fake Perfect separation of signal and background!.

Statistical tools shouldn’t give a different answer if bins are shuffled/sorted.

Try sorting by s/b. And collect bins with similar s/b together. Can get arbitrarily good
performance from an analysis just by overbinning it.

Note: Empty data bins are okay — just empty prediction is a problem. It is our
job however to properly assign s/b to data events that we did get (and all possible ones).



Model Validation

* Not normally a statistics issue, but something HEP
experimentalists spend most of their time worrying about.

e Systematic Uncertainties on predictions are usually
constrained by data predictions.

e Often discrepancies between data and prediction
are the basis for estimating systematic uncertainty



Checking Input Distributions to an MVA

* Relax selection requirements — show modeling in an inclusive sample
(example — no b-tag required for the check, but require it in the signal sample)

* Check the distributions in sidebands (require zero b-tags)

* Check the distribution in the signal sample for all selected events
* Check the distribution after a high-score cut on the MVA

Candidate Events

4000TLC 2Jets 0Tag CDF Il Preliminary 3.2 fb

w
(=3
(=
(=)
LI B

Candidate Events
S
(=]
(=]
T |'|'| ™T

1000}

2 0 2
Q (lep) o n (I-jet)
highg;zg/{m jet as a well-chosen proxy

All Channels CDF Il Preliminary 3.2 fb'1

300

MC normalized to data

Candidate Events

M single top 8]
H 70

Ottt _
Cwbb+Wcc €9
Ewe
EWwWqq 49
[ Diboson 30|

-0.5

200

150

100}

[Z+jets 20
faQco 10

50}

data 8.8 07 08 09 1

MC normalized to SM prediction

0 0.5 1
NN Output

TLC 2Jets 1Tag CDF Il Preliminary 3.2 fb”
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[ Ctt
F-ElWbb+Wcc
[ [ Wc

- B Wqq

[ Diboson

[ 1 Z+jets

L 0 QCD

Q (lep) ¢ n (I-jet)
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Example: Qlepton*nuntagged jet in
CDF’s single top analysis. Good
separation power for t-channel

signal.
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Phys.Rev.D82:112005 (2010)

MC normalized to SM prediction



Checking MVA Output Distributions

* Calculate the same MVA function for events in sideband (control) regions

* For variables that are not defined outside of the signal regions, put in
proxies. (sometimes just a zero for the input variable works well if the
qguantity really isn’t defined at all — pick a typical value, not one way off on the
edge of its distribution)

* Be sure to use the same MVA function as for analyzing the signal data.

Example: CDF NN single-top

NN validated using events with signal region
zero b-tag
" 0T Channels CDF Il Preliminary 3.2 fb” * All Channels CDF Il Preliminary 3.2 fb"
..qé; 6000 i Etsiingle top £ E tsiingle top 32 §
g ' I Whb+Wce .‘E 9 [ [DWbb+Wce 60 2
w =wc_ 3 w 300 i EWe_ 452 o
‘g 4000 = Dig?)son 2 3 [ = ‘l’)viggson 30 EQ-
L | [ Z+jets § g [ I Z+jets 20 7
© i Faco S 5 200 [EQcD 10k g
S I g % + data 6 07 08 09 1 &
© 2000 < O [ S
? g 100 £
0.5 1
0.5 1
NN
Output NN Output

Phys.Rev.D82:112005 (2010)



Candidate Events

A Comparison in a Control Sample that is Less than Perfect

CDF’s single top Likelihood Function discriminant checked in untagged events

(a) Phys.Rev.D82:112005 (2010) (b)
W + 2 and 3 Jets, =1 b Tag W + 2 Jets, 0 b Tags
[ —~ CDF Data a 0° - CDF Data
1000 Etsiingle Top S § 1 . Single Top
i [T W+HF g w 10° [t
B W+LF o 2
B Other % § 103
i~ .75 08 085 0.9 095 1 + -6 02
500F g e !
= ©
2 O 10
]
< 1
9 10"
02 04 06 08 1 0 0.2 04 06 0.8 1
LF Discriminant LF Discriminant

Strategy: Assess a shape systematic covering the difference between data and MC —
extrapolate the uncertainty from the control sample to the signal sample.

If the comparison is okay within statistical precision, do not asses an additional uncertainty
(even/especially if the precision is weak). Barlow, hep-ex/0207026 (2002).
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Another Validation Possibility — Train Discriminants to Separate Each Background

Same input variables as signal LF. LF has the property that the sum of these
plus the signal LF is 1.0 for each event. Gives confidence. If the check fails, it’s a starting

point for an investigation, and not a way to estimate an uncertainty.

6/5/12
Phys.Rev.D82:112005 (2010)

(a) (b)
W + 2 Jets. =1 b Tag W +2 Jets, =1 b Tag
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Model Validation with MVA’s

e Even though input distributions can look well modeled, the MVA output could
still be mismodeled.
Possible cause — correlations between one or more variables could be mismodeled
* Checks in subsets of events can also be incomplete.
A sum of distributions whose shapes are well reproduced by the theory can still
be mismodeled if the relative normalizations of the components is mismodeled.

e Can check the correlations between variables pairwise between data and prediction
* Difficult to do if some of the prediction is a one-dimensional extrapolation from
control regions (e.g., ABCD methods).

* My favorite: Check the MVA output distribution in bins of the input variables!
We care more about the MVA output modeling than the input variable modeling
anyway.

* Make sure to use the same normalization scheme as for the entire distribution —
do not rescale to each bin’s contents.

Ideally, we’d try to find a control sample depleted in signal that has exactly the same
kind of background as the signal region (usually this is unavailable).



The Sum of Uncorrelated 2D Distributions may be Correlated

| @
+ .

Knowledge of one variable helps identify which sample the event came from
and thus helps predict the other variable’s value even if the individual samples
have no covariance.



Isolation Fraction

CDF’s W Cross Section Measurement

“ABCD” Methods

, Iso4 vs Met

1.8 E_A . C CDF Run Il Preliminary

1.6[ f L ~72pb’
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N ey | . C A
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0.6 [ AN . .

0.40 W ~ev Candidates

0.2 ,’,‘L:g?. £ ‘ e . .'.

10 20 30 40 50 70 80 90 100

Missing Transverse Energy (MET)

Want QCD contribution to
the “D” region where signal
is selected.

Assumes: MET and ISO are uncorrelated sample by sample

Signal contribution to A,B, and C are small and subtractable

AN N1n/ N\

Energy in a cone of
radius 0.4 around
lepton candidate
not including the
lepton candidate /
Energy of lepton
candidate

ABCD methods are
really just on-off
methods where

T is measured using
data samples



N “ABCD” Methods
vantages

* Purely data based, good if you don’t trust the simulation
* Model assumptions are injected by hand and not in

a complicated Monte Carlo program (mostly)
* Model assumptions are intuitive

Disadvantages

* The lack of correlation between MET and ISO assumption may be false.
e.g., semileptonic B decays produce unisolated leptons and MET from the
neutrinos.
* Even a two-component background can be correlated when the contributions aren’t
by themselves.
» Another way of saying that extrapolations are to be checked/assigned sufficient
uncertainty
* Works best when there are many events in regions A,B, and C. Otherwise all the
problems of low stats in the “Off” sample in the On/Off problem reappear here.
Large numbers of events = Gaussian approximation to uncertainty in background in D
» Requires subtraction of signal from data in regions A, B, and C = introduces
model dependence
* Worse, the signal subtraction from the sidebands depends on the signal rate
being measured/tested.
- A small effect if s/b in the sidebands is small
- You can iterate the measurement and it will converge quickly



Examples of ABCD Methods

» Sideband calibration of background under a peak. (“what if the background peaks
also where the signal peaks?”)

* The on-off problem with t=A/C. Very frequently samples A and C are
in MC simulations, where we can be sure not to contaminate the background
estimations wtih signal. Example: Using the MC to estimate acceptance for a cut
for background, to be scaled with a data control sample.

But we pay the price of unknown MC mismodeling.

Uncorrelated variable assumption == assumption that t is the same in the data
and the MC. (check modeling of shape of distribution in the MC)

Equivalent of previous problem: Even if the background shapes are well modeled
by the MC, if there are multiple background processes which contribute, they can

have different fractional contributions, distorting the total shapes.
All Channe

M single top 80

]

* Fitting an MVA shape to g | Og _ ™
the data. Low-score MC = A, w3007 géq
High-Score MC =C § 200} Dzeets “

Low-score data = B, High-score Data=D. § ST T
100§

Is  CDF Il Preliminary 3.2 fb”

BE

1
NN Output

MC normalized to SM prediction



An Approximate LEE Correction for Peak Hunting
See E. Gross and O. Vitells, Eur.Phys.J. C70 (2010) 525-530.

Approximate formula applies to bump hunts on a smooth background.

Requires a few fully simulated pseudoexperiments with complete p-value calculations
over the region of interest. Count up-crossings of a threshold. Extrapolates to higher

thresholds assuming large-sample behavior. Specifically, that the LR test statistic has a
chisquared distribution.

An interesting feature — specific to bump hunts but may be more general:

As the expected significance goes up, so does the LEE correction

This makes lots of sense: LEE depends on the number of separate

models that can be tested. As we collect more data, we can measure the position

of the peak more precisely.

So we can tell more peaks apart from each other, even with the same reconstruction
resolution.

But: Combine a poor resolution low s/b search with a high resolution high s/b but very
tiny s and very tiny b search — may not get the right answer.



CDF’s 2011 H~>yy Search

[} 200 H—> vy signal at M, =120.0 GeVic?

5 180 + || Signal scaled to expected Ii.mi.t(16.2><SM)
> —_——— glag':al scaled to observed limit (32.0 x SM) . .
g 1 = Backsround Model 95% C.L. Limits for h— y v (7.0 fb™) o
o 140 - CDF Run Il Preliminary
) CDF Run Il Preliminary 60
'g 120 Central - Central UE, N
3 100 -~ T —=— Observed limit

= 50 — —— Expected limit All Channels

> L [ ] 1 sigma region

T N [ 2 sigma region

3 40

L B

120 130 140 150 160
M,, GeVi/c? > _

>b< 30—
93 H->y 7 signal at M_ = 120.0 GeV/c? —
c [ Signal scaled to expected limit (115.5 x SM) —
g 300 —_—— gignal scaled to observed limit (243.7 x SM) —
E | —— B:::akground Model 20 __
; 2 CDF Run Il Preliminary B
'g 20 CP Conversion 10 __
Z N

0 _l | | | 1 1 1 I 1 1 1 1 I | | | | I 1 1 1 1 I 1 1 | | | | 1
100 110 120 130 140 150 9
M, (GeVic)
130 140 150 160
M, GeV/c?
Insufficient sensitivity to a SM Higgs boson.
+2 other channels with Rate ruled out by other searches (gg2>H>WW
smaller excesses for example). So we know the bump is a stat

fluctuation.
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TABLE I: Luminosity, explored mass range and references for the different processes and final states (£ = e or y) for the CDF
analyses. The generic labels “2x™, “3x", and “4x™ refer to separations based on lepton categories.

Channel Luminosity my range Reference
(") (GeV/c?)

CDF +DO WH — Eubl_) 2-jet channels 4x(TT.,TL,Tx,LL,Lx) 9.45 100-150 17
WH — £vbb 3-jet channels 3x(TT,TL) 9.45 100-150 17
i ZH — vibb  (88,8],18) 9.45 100-150 18]
H 1885 Search ZH — £7¢7bb 2-jet channels  2x(TT,TL,Tx,LL) 9.45 100-150 19
Channels ZH — £7¢7bb 3-jet channels  2x(TT,TL,Tx,LL) 9.45 100-150 (19]
. H—-W"W~  2x(0 jets,]1 jet)+(2 or more jets)+(low-my;) 9.7 110-200 20]
Combined HoWW™ (e )+ (1-Thad) 9.7 130-200 21
WH - WW W~ (same-sign leptons)+(tri-leptons) 9.7 110-200 20)
WH W Vi;’ "W tri-leptons with 1 Thaa 9.7 130-200 21
: ZH — ZW'™W~  (tri-leptons with 1 jet)+(tri-leptons with 2 or more jets) 9.7 110-200 20]
>300 nuisance H— ZZ f?ur leptons 9.7 120-200 22
H+X—=r'r (1jet)+(2 jets) 8.3 100-150 23]
Pa rameters WH — bvr™ v~ J[ZH - £1 67 £-Thad=Thad 6.2 100-150 24
WH = bur™ v~ [ZH - €76 7 + T (f-femnac)+(e-p-Thad) 6.2 100-125 24
WH = bvr'r J[ZH = '8 v LE4 6.2 100-105 24
ZH = {6 v 7~ four leptons including 7.4 candidates 6.2 100-115 24
WH + ZH — jjbb  (SS.8]) 9.45 100-150 [25]
H -~y (CC,CP,CC-Conv,PC-Conv 10.0 100-150 26
arXiv:1203. 3774ttH - W “Sbbbb (lepton) (4jct,5jet,2)6jct)x(SSS,SSJ,SJJ,SS,SJ) 9.45 100-150 é_h.__i’
ttH — WWbbbb (no lepton)  (low met,high met)x(2 tags,3 or more tags) 5.7 100-150 28]

TABLE II: Luminosity, explored mass range and references for the different processes and final states (£ = e, u) for the DO

analyses.
Channel Luminosity my range Reference
(") (Gev/c')
WH — fvbb  (TST,LDT.TDT)x(2,3 jet) 9.7 100-150 (29!
ZH — vobb (MS,TS) 9.5 100-150 30,
ZH — 18 b5 (TST,TLDT) x (ee.pup,eercr pujteri) 9.7 100-150 31
H+ X~ Ti“"“] 7 4.3-6.2 105-200 32)
VH se'p 9.7 115-200 33
HaW™'W — éiuf" v (0,1,2+ jet) 8.6-9.7 115-200 34
H—-W™W™ = pvmaav 7.3 115-200 32)
H—-W'W = fpjj 5.4 130-200 35)
VH — 686+ X 9.7 100-200 36
VH s rrp+ X 7.0 115-200 37)
6/5/12 H =~y 9.7 100-150 38




Background p-value

Tevatron Higgs Search LEE

Cross Section times Branching

Local p-value vs Higgs boson mass o
Ratio Fits vs. my,

5 Tevatron Runll Preliminary

Bands show expectation assuming a signal :
~ SMH-sbb, L <10.0 fo
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—e— Best Fit
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Signal, Background, and Data in the ZH->1lbb Search

Reconstructed m;; distribution

CDF Run Il Preliminary 9.45/fb

80 [ All Sub-Channels

60

Events/(5 GeV)

20

100

6/5/12
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| 0 Z+ee

tt

1 zz

+_ 18wz

g | 4w
+4] 1 fake Z
150 200
Dijet Mass (GeV/c?)

T. Junk SLAC Stats Progress

You can tell

my is on the

high side of

the range only

by what’s missing
and not what’s
there!
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CDF’s WH channel expectation (x3 luminosity to
simulate the presence of other channels: llbb, METbb)

CDF 1I Preliminary (10 fb)

I - I - I - I - I - |

With a 115 GeV % 102 - - Expected Limits = 10 -
. . . N n ]
signal injected = - 5
E B Expected Limits + 20 .
o pum| i ]

'J .................. Expected with Injected M =115 GeV/c?
= 10¢ E
) i i
N [ ]
[V p) I i

A

3 E

100 110 120 130 140 150
Higgs Mass (GeV/c?)
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Stirring it All Together — DO’s LLR Test

50 —SM“'ngg“S"'(,mﬁbi'nation§
40 EDZer :
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100 110 120 130 140 150 160 170 180 190 200
August 18,2010 my, (GeV)

Assuming observed and expected +3 sigma
excess, and median outcome. Resolution from

-2ALLR = Ax?=1

Resolution at 115 GeV:
Resolution at 135 GeV:
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An interesting Bias Bill Murray Showed at
The Next Stretch of the Higgs Magnificent Mile Conference

Seek a bump on a smooth background
Example: LHC (or Tevatron) H=>yy search.

-1 rr 11| ¢+ 111t | 1 1T T T 11

800

Inclusive diphoton sample
] Data 2011
Background model
......... SM Higgs boson m_ =120 GeV (MC)

700

Events /1 GeV

Allow m, to float and pick the m,, that
maximizes the fitted cross section.

600

500 \s=7TeV, j Ldt=4.9fb"

The fitted cross section will be biased 400

upwards and the position resolution
of “lucky” outcomes will be worse than 200
unlucky ones even if a signal is truly 100
present.

300

IIIIIIllllIIIIIIIIIIIIIIIII[II[II
l'd'lIll|IIII|IIII|IIII|IIIIIIIII|II-

Why? A true bump can coalesce with

a fluctuation either to the left or to the
right of the bump (two chances to fluctuate
upwards).

Data - Bkg model

Effect can be substantial! Calibrate with simulated experimental outcomes (FC).

https://twindico.hep.anl.gov/indico/conferenceOtherViews.py?view=standard&confld=856



N 1 ;\ I T T T T ‘ T ‘ T ‘ T T
-
S LEP
10 = E
_2: ]
10 = E
10 '3; —— Observed ;
E Expected for .
B background 7
4 N
10 E
s 114.4 |
10 1115.3 =
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LEE for Limits?

No, but there is the
opposite effect. We take
the most conservative mass
exclusion. If the CLs curve
crosses several times we
guote the smallest (LEP).

Hard to say what the median
expected limit is — the place
where the median CLs crosses
the line is higher than the
median lowest limit.

LHC and Tevatron experiments
quote multiple disjoint m, limits.

No LEE: justification — each

test at each m,, is an independent
search with its own error rate,
assuming a particle is truly there
at each mass one at a time.
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95% CL Limit/SM

10

LEE for Limits?

Tevatron Run Il Preliminary, L < 10.0 fb™
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interpretation.
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But the limits are of secondary
importance here.



Where is “Elsewhere?”

A collider collaboration is typically very large; >1000 Ph.D. students. ATLAS+CMS is another
factor of two. (Four LEP collaborations, Two Tevatron collaborations).

Many ongoing analyses for new physics. The chance of seeing a bump somewhere is
large. What is the LEE?

Do we have to correct our previously published p-values for a larger LEE when we add
new analyses to our portfolio?

How about the physicist who goes to the library and hand-picks all the largest excesses?
What is LEE then?

“Consensus” at the Banff 2010 Statistics Workshop: LEE should correct only for those
models that are tested within a single published analysis. Usually one paper covers one
analysis, but review papers summarizing many analyses do not have to put in additional
correction factors.

For the Winter 2012 Higgs search analyses, we had several LEE’s computed, depending
on the mass range defined to be elsewhere.

Caveat lector.



Where is “Elsewhere?”

LEE is often hard enough to evaluate. Right way to do it — compute p-value of p-values
simulate experiment assuming zero signal many times and for each simulated outcome
find the model with the smallest p-value.

Multidimensional models are harder, and LEE is worse.

Kane, Wang, Nelson, Wang, Phys. Rev. D 71, 035006 (2005)

LEP 88-209 GeV Preliminary —~ 160 . .
; _ o (a)
i 200 [ Theoretically Disallowed > 140 |
S i i z [ -
- 180 i
: © 120 |
s 160 < I
"l 140 g 100
E _ : Theoreticall
g S 120 80 [ Inaccessibley 1
- —20 ¢ 100 i ]
i 1 g 60 ]
- 80 |- i ]
10 .2: ——— .Observed . g . ! 60 | 40 n p
F - Expected for signal plus background [ ]
o Expected for background . 40 | 20 ]
i »;30' 20 + 0:..|...|...;...|...1...|...'
3 0 bt ; . T i 0 20 40 60 80 100 120 2140
L 11 | LA il I LA il ! L 1l I LA il I L1 4l | L1 11 |
10 8685 90 95 100 105 110 115 120 S m, (GeV/c?)
my(GeV/ c’) ALELPH, DELPHI, L3, OPAL, and the LHWG

ALEPH, DELPHI, L3, OPAL, and the LHWG Eur.Phys.). C47 (2006) 547-587

Phys.Lett. B565 (2003) 61-75 . _
Two excesses seen; proposed models explain both with two

Higgs bosons. Combined local significance is greater, but LEE
now is much larger (and unevaluated). Published plot grays out region

6/5/12 beyond experimental sensitivity. 50



Search for structures in J/1y¢ mass--Data

* We model the Signal (S) and Background (B) as:
S: S-wave relativistic Breit-Wigner  B: Three-body decay Phase Space

CDF Il Preliminary, 2.7 fb™ Convoluted with resolution
Yield =14+5 (1.7 MeV)

Am =1046.3+ 2.9 (stat) MeV/c?

Width = 11.7 *83 _ (stat) MeV Slide from K. Yi,
| Fermilab Joint

Experimental/Theoretical

Physics Seminar,
March 17, 2009

How many bumps do
you see?

Candidates/10 MeV/c?
O O N W &b O O N OO O

1 1.1 1.2 1.3 1.4 1.5
AM=m(ppK*K)-m(p'pn) AM (GeV/cz)

V(-2log(L,.,/L,))=5.3, need Toy MC to determine significance for low statistics

What if we don’t have a signal model, and we’re just on a hunting expedition? What’s LEE now?



Choosing a Region of Interest

* | do not have a foolproof prescription for this, just some thoughts.

* Analyses are designed to optimize sensitivity, but LEE dilutes sensitivity. There is a
penalty for looking for many independently testable models. Can we optimize this?

* But you should always do a search anyway! If you expect to be able to test
a model, you should.

» Testing previously excluded models? We do this anyway, just in case some new physics
shows up in a way that evaded the previous test.

* There is no such thing as a model-independent search. Merely building the LHC or the
Tevatron means we had something in mind. And the SM (or just our implementation
of it) is wrong, but possibly not in a way that is both interesting and testable.



Look ElseWHEN

converge on -
correct answer, but the

deviations in units of the

expected uncertainty have s |
a random walk in the [ ]
logarithm of the number of
trials n o [ .

Erk/n o3
d, =+
" 1Y/

The rk are IlD numbers draWn _2 : | \HHH‘ | \HHH‘ 2\ \HHH‘ 3\ \HHH‘ 4\ \HHH‘ 5\ \HHH‘ 6\ \HHH‘ | \HHH‘ | \HHH‘ |
from a unit Gaussian.

15 [ =

05 [ -
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Trial Number

=n
It’s possible to cherry-pick a dataset with a

maximum deviation. “Sampling to a foregone conclusion”

Stopping Rule: In HEP, we (almost always!) take data until our money is gone. We
produce results for the major conferences along the way. Some will coincidentally stop
when the fluctuations are biggest. We take the most recent/largest data sample result
and ignore

(or should!) results performed on smaller data sets. p-values still distributed uniformly
from Oto 1. Arecipe for generating “effects that go away”



LOOk EISEWHEN lmplica’tions

C. Paus

Workshop,
CMS Hlstory H— yy Mar. 27, 2012
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T [ Vs=7Tevi=1.00m’ e e+ Observed Bayosientimkt | T OENs=TTevL=166m" Observed Bayeslan Limit
% 12 ...... Median Expected CLs Limit % 6
- ! <, . . . ssssees Medlan Expected CLs Limit
g 10-EPS 1 Oglfb :] et s g LP 1 66/fb - + % Expected CLs
o 20 Expacted CLs I~
i‘ :T:. |:] + 20 Expected CLs
T T

1 1 1 1 1 | Txog, 1xOgy
PEPEFEE BT R P SR R S | PEPETETS EPUTEPETS SPRPEET ST SRR SRR EPEPETEre PR
‘ilo 115 120 125 130 135 140 15 120 125 130 135 140 145 150

m, (GeV, m,, (GeV/c?)

sM

" m— Observed CLs Limit p," nary
H Median Expected CLs Limit CMS e

dCLs \Ii-?T.VL-47¢

e EPS (1.09/fb) LP (1.66/fb)
Dec 19 (4.76/fb)

e ‘peaks’ come and go

e we are getting into
interesting territory, and
peaks can also stay
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https://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=162621
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Parameter Estimation — Marginalize or Profile?

—
- — Predicted
25; ----- Observed

Yield

- Predicted = 103
S Observed = 15

-3 -2 -1

R S R H S S AR AR
0 0 1 2
Nuisance Parameter v (units of o)

-3 -2 -1 0 1

3
Nuisance Parameter v (units of o)

: AR T S S S A ST ST R T AR SO NN BN N R E
0 2

W4+Jets, NN Discriminant CDF Il Preliminary 7.5 fb™

+0.57
gy = 3.04 53 pb
Assuming m = 1725 GeV/c?

0.01

0.005

Posterior Probability Density

% 2 4 8 8
Single Top Quark Cross Sections_,[pb]

If Pred = 10°® 5, and obs=15, then the likelihood would have one maximum,
but it would have a corner. MINUIT may quote inappropriate uncertainties as the

second derivative isn’t well defined.

The corner can be smoothed out — See

R. Barlow, http://arxiv.org/abs/physics/0406120,

http://arxiv.org/abs/physics/0401042
http://arxiv.org/abs/physics/0306138

6/5/12

But | know of no way

to get rid of the double-peak

(nor should there be a way --

it can be a real effect. See the LEP2 TGC measurement:
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Analysis Optimization in Isolation or in Combination?

Typical situation:
A measurement has a statistical and a systematic uncertainty, where the
statistical uncertainty includes “good” systematics that are constrained by the data,
and the “bad” ones never get better constrained no matter how much data are collected.

We sometimes have a choice of how to analyze marked Poisson data.

1) aggressive reconstruction making assumptions about particle distributions — more
statistical power per event at the cost of introducing systematic uncertainty

2) more model-independent analysis with fewer assumptions — less statistical power per
event but better control over systematics.

- Combination with other measurements (from other data runs or other collaborations)
is like collecting more data. Method 1 hits the systematic limit and loses weight in

the combination even though it may be the most powerful method by itself.

More general: With little data, we are more dependent on our assumptions, with more
data we can relax the assumptions and constrain our models.

Recommendation: For combinations, optimize for the large luminosity case.



Correlations among Uncertainties — When is it
Conservative, when not?

e Within a channel — contributions that add together: including correlations
usually weakens the sensitivity (always: sensitivity is expected)

* Between channels — accounting for correlations is not conservative
One channel’s observed data becomes another “off” sample for another’s.
Have to trust all the t factors, and even offsets from central predictions
in order to put in these correlations.

* Overestimating the impacts of systematic uncertainty on a prediction
is not conservative if a correlation is taken into account. Can result
in underestimated systematic error on a combined result.

Example (systematic uncertainty 1 is 100% correlated, syst uncertainty 2 is 100% correlated

Measurement 1: m;=5=*1 (systl) + 1 (syst2) Combine with BLUE: m,=2m,-m,
Measurement 2: m, =5+ 1 (systl) + 2 (syst2) 2> m,. =5+ 1(systl) £ 0 (syst2)

Here accounting for correlation and an overestimated systematic uncertainty
results in an aggressive result.



Extra Slides



Where is “Elsewhere?”

* Most searches for new physics have a “region of interest”

 Definition is a choice of the analyzer/collaboration

» Often bounded below by previous searches, bounded above by kinematic
reach of the accelerator/detector

* Limits the amount of work involved in preparing an analysis. Sometimes a 2D
search involves lots of training of MVA’s and checking sidebands and validation

of inputs and outputs

CDF Run Il Preliminary JLdt=2.6fb'1

“g [ = Observed Limit (95% CL)
Example: A search for o 120 - Expected Limit (+1o)
. O
pair-produced stop quarks @ 100k
which decay to c+Neutralino s |
2 8of
s T
If |v'stop>mw+rnb-l-mneutralino _§ 601

then another analysis takes over. -
RY cDF 295 pb!

- LEP§=0° b 995 pb”
L 1 I 1 1 1 I L 1 I\R 1 L I L 1 L I L L L I L L L I
60 80 100 120 140 160 180

Stop Mass [GeV/c?]

I ILIIIIIY e SR
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An Example: Double-Tag Methods

Dijet events at LEP1/SLD

Z->u,ubar %
d,dbar

S,Sbar ® Primary
ﬂ _\ b,bbar % e
\L/ X leptons
neutrinos

A double-vertex-B-tagged event
with a semileptonic decay

B-tagging efficiencies (efficiency of finding the displaced vertex)

are about 40%. We do not trust MC modeling of the b-tag efficiency.
Would like to measure the B-tag efficiency and the Br(Z—>b,bbar)
branching fraction together in the same data. Count events with

0, 1, and 2 vertex tags. Enough information to solve for the Br and
the efficiency.

x=b-tag of jet 1, y=b-tag of jet 2. Assume uncorrelated probabilities
for tagging the jets. But the flavor of the jets is correlated! It is this
flavor correlation that allows us to extract Br and Tag eff.



On-Off Measurements — Averaged or Combined

* One global on-off measurement vs. breaking the data into subsamples
* Assume the “off” data are collected along with the “on” data (control sample
on the other side of a cut for example)

* Global on-off measurement allows each data subsample’s off measurements
to help measure each other data subsample’s on sample’s backgrounds.
Assumption which may be false: you are allowed to do this. If the detector

or accelerator changed part way through the run, then you may need to break
the samples up.

* Breaking them apart allows only each subsample’s off measurements to
calibrate the background in the corresponding on samples.

* Same for ABCD methods — averaging subsamples



oQ

Single Top Production Mechanisms

“t-Channel”

S
[y
o~

“NLO Contributions to t-Channel Production”



Accepted Cross Section x Branching Ratio (fb)

Leveraging our Rate Measurements to
Measure the Higgs Boson Mass

Assuming SM cross sections and branching fractions, measured rates are strong
functions of m,,. Example at m_ =115 GeV, assuming +3 sigma excess, and a median
outcome in both the bb,tt channels and the WW channels:

16 |
14
12 |

10

(o]

Tevatron Run Il Preliminary Projection

L T T

— H-bb,tt
— H-WW

coe b bl Y

m,=115 GeV

T

0 L
100

130 140 150

180

m, (GeV)

Tau channels can contribute here, even with
less precise m .. than the bb channels

Tevatron Run Il Preliminary Projection

T T T T T T

Accepted Cross Section x Branching Ratio (fb)

— H-—bb,tt
— H-WW

m,=115 GeV

P N R . S R |

190 200

130 140 150 160 170 180 190 200

m, (GeV)



An Extreme Example from Georgios Choudalakis

Ten MC events, used to estimate a background b, but with different weights.

1,=0.1 Thesumis5.5=b

1,=0.2 But what to use for the prior on b?

13=0.3

1,=0.4 Are there any possible (and possibly large) weights which are not
1.=0.5 represented here? Could we have gotten a MC event with weight=1007?
1,=0.6

t,=0.7 Very little information about the distribution of the

1,=0.8 weights is present here.

1,=0.9

T,,=1.0 Need acceptance as a function of weight.

General limit/discovery tools — do we need a histogram of weights
for each bin of each signal and background contribution? What if
this is insufficient anyway (as it is in this case).
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Interesting Behavior of CL,

CL, may not be a monotonic function of -2InQ

Tails in the -2InQ distribution shared in the s+b and b-only hypothesis

(fit failures)

Distributions

are sums of

two Gaussians
each. The wide
Gaussian is
centered on zero.

Practical reason this
could happen —

every thousandth
experimental outcome,
the fit program “fails”

and gives a random answer.

e
o

—

Pseudoexperiments (arbitrary units)

4
10

10

10

10

-20

-10 -5 0 5 10 15 20

-2InQ

CL=1 for
-2InQ < -15 or
-2InQ > +15

Not really a pathology of the method, but rather a reflection that the
test statistic isn’t always doing its job of separating s+b-like outcomes from
b-like outcomes in some fraction of the cases.




A Bump that Got Away

No i
“the width of the bins is % s [ Standard Processes ALEPH
designed to correspond to twice > - [ Data (0)
the expected resolution ... and = I
their origin is deliberately chosen 3 4L
to maximize the number of 2 [
events found in any two S [
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1+ - _
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ALEPH Collaboration, Z. Phys. C71, 179 (1996) IM (GeV/c?)

Dijet mass sum in e*e—jjjj



A Sample with Zero Covariance is Not Necessarily Uncorrelated

//
\ X

Example — perimeter of a circle. Knowledge of x provides knowledge of y
up to a 2-fold ambiguity. But the covariance of the sample vanishes!

Something to watch out for with Principal Components Analysis — does not remove
correlation, only covariance.



Cases to be Careful about Applying the LEE Approximation

Not all searches are bump hunts on a smooth background

— Multivariate Analyses are usually trained up
at each mass separately, and there is not a single distribution we can look elsewhere in.

Statistical effects only. If there’s a systematic effect in the background modeling,
a “signal” may grow in significance with additional data in a way that’s not described here.

The mismodeling may be concentrated in a small portion of the histogram (this is not
a LEE effect but a more difficult question).

Background parameterization may grow in sophistication as data are collected.
Not all LR test statistic distributions are modeled well by chisquared distributions.

Combine a large-data-sample bump hunt with a high s/b, low-background (say, b=1e-5)
search and the distribution of the LR is a convolution of chisquared and Poisson.



