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            Binomial, Poisson,
            and Gaussian Distributions
            Making Measurements
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Useful Reading Material
Particle Data Group reviews on Probability and Statistics.  http://pdg.lbl.gov

Frederick James, “Statistical Methods in Experimental
   Physics”, 2nd edition, World Scientific, 2006

Louis Lyons, “Statistics for Nuclear and Particle Physicists”
  Cambridge U. Press, 1989

Glen Cowan, “Statistical Data Analysis”  Oxford Science Publishing, 1998

Roger Barlow, “Statistics, A guide to the Use of Statistical
Methods in the Physical Sciences”, (Manchester Physics Series) 2008.

Bob Cousins, “Why Isn’t Every Physicist a Bayesian” 
Am. J. Phys 63, 398 (1995).

http://www.physics.ox.ac.uk/phystat05/
http://www-conf.slac.stanford.edu/phystat2003/
http://conferences.fnal.gov/cl2k/
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So Why Study Probability and Statistics?

•  It’s how to be a scientist!  The basic steps:
•  Ask a question about Nature
•  Formulate hypotheses to test
•  Design an Experiment
•  Build the Experiment
•  Run the Experiment :  Count collision events
•  Make statements about the hypotheses
•  Publish

In practice, these steps are often done in many different
orders, sometimes in parallel, often repeatedly.
•  Detector and accelerator upgrades to do better physics
•  New topics become interesting with more data
•  New ideas from theorists and other experiments

Can be
contentious!
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Figures of Merit
Our jobs as scientists are to

•  Measure quantities as precisely as we can
      Figure of merit:  the uncertainty on the
         measurement

•  Discover new particles and phenomena
      Figure of merit:   the significance of evidence
               or observation  --  try to be first!
      Related:   the limit on a new process

To be counterbalanced by:
•  Integrity:  All sources of systematic uncertainty must be
      included in the interpretation.
•  Large collaborations and peer review help to identify
  and assess systematic uncertainty
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Figures of Merit
Our jobs as scientists are to

•  Measure quantities as precisely as we can
      Figure of merit:  the expected uncertainty on the
         measurement

•  Discover new particles and phenomena
      Figure of merit:   the expected significance of evidence
               or observation  --  try to be first!
      Related:   the expected limit on a new process

To be counterbalanced by:
•  Integrity:  All sources of systematic uncertainty must be
      included in the interpretation.
•  Large collaborations and peer review help to identify
  and assess systematic uncertainty

Expected Sensitivity is used in Experiment and Analysis Design
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Probability and Statistics
Statistics is largely the inverse problem of Probability

Probability:  Know parameters of the theory → Predict
                     distributions of possible experiment outcomes

Statistics:    Know the outcome of an experiment → Extract
                    information about the parameters and/or the theory

Probability is the easier of the two -- solid mathematical arguments
can be made.

Statistics is what we need as scientists.  Much work done in
the 20th century by statisticians.

Experimental particle physicists rediscovered much of that work
in the last two decades.

In HEP we often have complex issues because we know so much about
our data and need to incorporate all of what we know
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Some Probability Distributions useful in HEP

Binomial:
   Given a repeated set of N trials, each of which has
   probability p of “success” and 1 - p of “failure”, what is
   the distribution of the number of successes if the N trials
   are repeated over and over?
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k is the number of “success” trials

Example: events passing a selection cut, with a fixed total N
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Some Probability Distributions useful in HEP

Poisson:

Limit of Binomial when N → ∞ and p → 0 with Np = µ finite

! 

Poiss(k | µ) =
e
"µµk

k!
     #(k) = µ

All counting results in HEP are assumed to be Poisson
distributed   

Binomial is formally more correct since the
number of bunch crossings and particles per bunch are
finite -- but very large).

! 

Poiss(k | µ)
k= 0

"

# =1,    $µ
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Poiss(k | µ)dµ =1
0

"

#       $k

Normalized to
unit area in
two different senses

µ=6
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Composition of Poisson and Binomial Distributions

Example:  Efficiency of a cut, say lepton pT in leptonic
W decay events at the Tevatron

Total number of W bosons:  N -- Poisson distributed with
mean µ

The number passing the lepton pT cut: k

Repeat the experiment many times.  Condition on N
(that is, insist N is the same and discard all other trials
with differnet N.  Or just stop taking data).

p(k) = Binom(k|N,ε)   where ε is the efficiency of the cut
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Composition of Poisson and Binomial Distributions

But the number of W events passing the cut is just another
counting experiment -- it must be Poisson distributed.

But that means no longer conditioning on N (µ = σL)

! 

Poiss(k |"#L) = Binom(k |N,")Poiss(N |#L)
N= 0

$

%

A more general rule:  The law of conditional probability

P(A and B) = P(A|B)P(B) = P(B|A)P(A)    more on this one later

And in general, 

! 

P(A) = P(A |B)P(B)
B
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Joint Probability of Two Poisson Distributed Numbers

Example -- two bins of a histogram
Or -- Monday’s data and Tuesday’s data

! 

Poiss(x |µ)"Poiss(y |# ) = Poiss(x + y |µ + #) "Binom x | x + y,
µ

µ + #
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The sum of two Poisson-distributed numbers is Poisson-
distributed with the sum of the means

! 

Poiss(k |µ)Poiss(n " k |#)
k= 0

n

$ = Poiss(n |µ +# )

Application:  You can rebin a histogram and the contents of each
bin will still be Poisson distributed (just with different means)

Question:  How about the difference of Poisson-
distributed variables?
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Application to a test of Poisson Ratios
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Poiss(x |µ)"Poiss(y |# ) = Poiss(x + y |µ + #) "Binom x | x + y,
µ
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Our composition formula from the previous page:

Say you have ns in the “signal” region of a search, and
nc in a “control” region  -- example:  peak and sidebands

ns is distributed as Poiss(s+b)
nc is distributed as Poiss(τb)

Suppose we want to test H0: s=0.  Then ns/(ns+nc)
is a Binomial variable that measures 1/(1+τ)
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Another Probability Distribution useful in HEP

Gaussian:

It’s a parabola on a log scale.

! 

Gauss(x,µ,") =
1

2#" 2
e

$
(x$µ )2

2" 2

Sum of Two Independent Gaussian Distributed
Numbers is Gaussian with the sum of the means
and the sum in quadrature of the widths

! 

Gauss z,µ + ", # x

2 +# y

2( ) = Gauss(x,µ,# x )Gauss(z $ x,",# y )dx
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A difference of independent Gaussian-distributed numbers is also
Gaussian distributed (widths still add in quadrature)
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The Central Limit Theorem
The sum of many small, uncorrelated random numbers
is asymptotically Gaussian distributed -- and gets more so
as you add more random numbers in.   Independent of
the distributions of the random numbers (as long as they stay
small).
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Poisson for large µ is Approximately Gaussian of width
                              

! 

" = µ

If, in an experiment
all we have is a 
measurement n, we
often use that to
estimate µ.

We then draw
error bars on the data.
This is just a convention,
and can be misleading.
(We still recommend you
do it, however)

! 

n
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Why Put Error Bars on the Data?

•  To identify the data to people who are used to seeing it this
   way

•  To give people an idea of how many data counts are in a bin
   when they are scaled (esp. on a logarithmic plot).

•  So you don’t have to explain
   yourself when you do something
   different (better)

! 

n " µ

The true value of µ is
usually unknown

But:
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Aside:  Errors on the Data?  (ans: no)
Standard to make histograms with no errors:  MC model
   points with error bars

But we are not uncertain of nobs!   We are only uncertain
about how to interpret our observations; we know how to count.

Correct
presentation
of data and
predictions
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Not all  Distributions are Gaussian

Track impact
parameter
distribution
for example

Multiple 
scattering --
core: Gaussian;
rare large scatters;
heavy flavor, 
nuclear interactions,
decays (taus in 
this example)

“All models are false.  Some 
  models are useful.”

Core is approximately
Gaussian
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Different Meanings of the Idea “Statistical Uncertainty”

•  Repeating the experiment, how much would we expect the
   answer to fluctuate?

   -- approximate, Gaussian

•  What interval contains 68% of our belief in the parameter(s)?
      Bayesian credibility intervals

•  What construction method yields intervals containing
   the true value 68% of the time?
      Frequentist confidence intervals

In the limit that all distributions are symmetric Gaussians,
these look like each other.  We will be more precise later.
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Why Uncertainties Add in Quadrature

Probability distribution of a sum of Gaussian distributed
random numbers is Gaussian with a sum of means and
a sum of variances.

Convolution assumes variables are independent.

Common situation -- a prediction is a sum of 
uncertain components, or a measured parameter is a sum
of data with a random error, and an uncertain prediction

e.g., Cross-Section = (Data-Background)/(A*ε*Luminosity)
where Background, Acceptance and Luminosity are
obtained somehow from other measurements and models.

“statistical” “systematic”
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Statistical Uncertainty on an Average of Random Numbers
Drawn from the Same Gaussian Distribution

N measurements, xi ± σ are to be averaged

The uncertainty on the sum is 

so the uncertainty on the average is

You can look up the uncertainty on the width σ
in the PDG if you measure that with the RMS of N measurements.
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Uncertainties That Don’t Add in Quadrature
Some may be correlated!  (or partially correlated).  Doubling
a random variable with a Gaussian distribution doubles its
width instead of multiplying by 

Example:  The same luminosity uncertainty affects
                 background prediction for many different
                 background sources in a sum.  The luminosity
                 uncertainties all add linearly.  Other uncertainties
                 (like MC statistics) may add in quadrature or linearly.

Strategy:   Make a list of independent sources of uncertainty -- these
                  each may enter your analysis more than once.  Treat
                  each error source as independent, not each way they
                  enter the analysis.  Parameters describing the sources
                  of uncertainty are called nuisance parameters
                  (distinguish from parameter of interest)



Statistics/Thomas R. Junk/TSI July 2009 23

Propagation of Uncertainties

Covariance:

If

then

In general, if 

This can even
vanish!
(anticorrelation)

u

v
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Relative and Absolute Uncertainties

If

then

or, more easily memorized:

“relative errors add in quadrature” for multiplicative uncertainties
(but watch out for correlations!)

The same formula holds for division (!) but with a minus sign in
the correlation term.
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How Uncertainties get Used
•  Measurements are inputs to other measurements -- to compute
   uncertainty on final answer need to know uncertainty on parts.

•  Measurements are averaged or otherwise combined -- weights
   are given by uncertainties

•  Analyses need to be optimized -- shoot for the lowest uncertainty

•  Collaboration picks to publish one of several competing analyses
   -- decide based on sensitivity

•  Laboratories/Funding agencies need to know how long to run
   an experiment or even whether to run.

   Statistical uncertainty: scales with data.  Systematic uncertanty 
   often does too, but many components stay constant -- limits to
   sensitivity. 
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Examples from the
front of the PDG
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χ2 and Goodness of Fit
For n independent Gaussian-distributed random numbers, the
probability of an outcome (for known σi and µi ) is given by

If we are interested in fitting a distribution (we have a model
for the µi in each bin with some fit parameters) we can maximize
p or equivalently minimize

For fixed µi this χ2 has n degrees of freedom (DOF)

σi includes
stat. and syst.
errors
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Counting Degrees of Freedom
has n DOF for fixed µi and σi

If the µi are predicted by a model with free parameters
(e.g. a straight line), and χ2 is minimized over all values
of the free parameters, then

DOF = n - #free parameters in fit.

Example:  Straight-line least-squares fit: 
DOF = npoints - 2   (slope and intercept float)

With one constraint: intercept = 0,
6 data points, DOF = ?
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MC Statistics and “Broken” Bins

• Limit calculators cannot tell if the background expectation
is really zero or just a downward MC fluctuation.
•  Real background estimations are sums of predictions with
   very different weights in each MC event (or data event)
•  Rebinning or just collecting the last few bins together often helps.

•  Advice:  Make your own visible underflow and overflow bins
  (do not rely on ROOT’s underflow/overflow bins -- they are usually
not plotted. Limit calculators should ignore ROOT’s u/o bins).

NDOF=?
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χ2 and Goodness of Fit
•  Gaussian-distributed random numbers cluster around µi
   -- 68% within 1σ.  5% outside of 2σ.  Very few
   outside 3 sigma.

   Average contribution to χ2 per DOF is 1.   χ2/DOF
  converges to 1 for large n

TMath::Prob(Double_t Chisquare,Int_t NDOF)

Gives the chance of seeing the value of
Chisquared or bigger given NDOF.

This is a p-value (more on these later)

CERNLIB routine:  PROB.
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A large value of χ2/DOF -- p-value is
microscopic.  We are very very sure
that our model is slightly wrong.
With a smaller data sample, this model
would look fine (even though it is
still wrong.

χ2 depends on choice
of binning.

Chisquared Tests for Large Data Samples

Smaller
data samples:
harder to
discern
mismodeling.
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χ2 Can Sometimes be so Good as to be Suspicious

no free parameters in model
(happy ending:  further data points increased χ2 )

It should happen
sometimes!  But it
is a red flag to go
searching for
correlated errors
or overestimated
errors



Statistics/Thomas R. Junk/TSI July 2009 33

Including Correlated Uncertainties in χ2

Example with 
•  Two measurements a1± u1± c1 and a2 ± u2 ± c2 of one parameter x
•  Uncorrelated errors u1 and u2
•  Correlated errors c1 and c2  (same source)

If there are several sources of correlated error ci
p  then the 

off-diagonal terms become
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1 standard-deviation error from χ2(xbest±σ0)-χ2(xbest)=1

Can be extended to many measurements of the same parameter x.

Combining Precision Measurements with BLUE

Procedure:  Find the value of x which minimizes χ2

This is a maximum likelihood fit with symmetric, Gaussian
uncertainties.

Equivalent to a weighted average:
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x
best
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More General Likelihood Fits

  

! 

L = P(data |
r 
" ,

r 
# )

ν:  “Parameters of Interest”   mass, cross-section, b.r.
θ:  “Nuisance Parameters”   Luminosity, acceptance, 
                                              detector resolution.

Strategy -- find the values of θ and ν which maximize L

Uncertainty on parameters:  Find the contours in ν such
that

ln(L) = ln(Lmax) - s2/2,   to quote s-standard-deviantion
intervals.  Maximize L over θ separately for each value of
ν.  Buzzword:  “Profiling”
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More General Likelihood Fits
Advantages:
•  “Approximately unbiased”
•  Usually close to optimal
•  Invariant under transformation of parameters.  Fit for a mass
   or mass2 doesn’t matter.

Unbinned likelihood fits are quite popular.  Just need 

Warnings:
•  Need to estimate what the bias is, if any.
•  Monte Carlo Pseudoexperiment approach:  generate lots of random
 fake data samples with known true values of the parameters sought,
 fit them, and see if the averages differ from the inputs.
•  More subtle -- the uncertainties could be biased.  
  -- run pseudoexperiments and histogram the “pulls” (fit-input)/error -- should
get a Gaussian centered on zero with unit width, or there’s bias.
•  Handling of systematic uncertainties on nuisance parameters by maximization
   can give misleadingly small uncertainties -- need to study L for other values
   than just the maximum (L can be bimodal)

  

! 

L = P(data |
r 
" ,

r 
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Example of a problem:
Using Observed Uncertainties in Combinations Instead 
of Expected Uncertainties

Simple case: 100% efficiency.  Count events in several
subsets of the data.  Measure K times                   each with
the same integrated luminosity.

! 

n
i
± n

i

Total:

! 

N
tot

= n
i

i=1

K

"

Best average:  navg= Ntot/K

Weighted average:
(from BLUE)
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navg =

ni /" i
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=
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i=1
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1/ni
i=1

K
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=

K

1/ni
i=1

K

#

crazy behavior (especially
if one of the ni=0)
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-- low measurements have smaller
uncertainties than larger measurements.

True uncertainty is the scatter in the
measurements for a fixed set of true
parameters

Solution:  Use the expected error
for the true value of the parameter after
averaging -- need to iterate!

Mean: -0.25

Width:  0.97

“Pull” = (x-µ)/σ

What Went Wrong?

! 

µ

But:  Sometimes the “observed” uncertainty carries some real
information!  Statisticians prefer reporting “observed”
uncertainties as lucky data can be more informative than
unlucky data.  
Example:  Measuring MZ from one event -- leptonic decay is better than
hadronic decay.
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A Prominent Example of Pulls -- Global Electroweak Fit

χ2/DOF = 18.5/13

  probability = 13.8%

Didn’t expect a 3σ
result in 18 measurements,
but then again, the total
χ2 is okay
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Bounded Physical Region
What happens if you get a best-fit value you know can’t possibly be the true?

Examples:

Cross Section for a signal < 0
m2(new particle) < 0
sinθ < -1 or > +1

These measurements are important!  You should report them without adjustment.
(but also some other things too)

An average of many measurements without these would be biased.
Example:  Suppose the true cross section for a new process is zero.
Averaging in only positive or zero measurements will give a positive answer.

Later discussion:  confidence intervals and limits -- take bounded physical
    regions into account.  But they aren’t good for averages, or any other
    kinds of combinations.



Statistics/Thomas R. Junk/TSI July 2009 41

Odd Situation:  BLUE Average of Two Measurements not Between
the Measured Values

Parameter of “Interest”
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